Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 11.38QE
Interpretation Introduction
Interpretation:
The amount of heat that is required to convert the ice into liquid water has to be calculated.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. Calculate the energy in the form of heat (in kJ) required to change 76.9 g of liquid water at 25.2 °C
to ice at –15.2 °C. Assume that no energy in the form of heat is transferred to the environment.
(Heat of fusion = 333 J/g; heat of vaporization = 2256 J/g; specific heat capacities: ice = 2.06
J/g-K, liquid water = 4.184 J/g-K)
%3D
How much heat is required to evaporate 100.0 g of liquid ammonia, NH3, at its boiling point if its enthalpy of vaporization is 4.8 kJ/mol?
How much heat is released ( in J) when 54.0 g of water at 10.0 °C is cooled to form ice at -10.0 °C? Molar mass of H2O = 18.0 g/molSpecific heat capacity of H2O(s) = 2.09 J/g. °CSpecific heat capacity of H2O(l) = 4.18 J/g. °C∆Hfus= 6.02 kJ/molBoiling point of water is 100.0°CFreezing point of water is 0.0 °C
Chapter 11 Solutions
Chemistry: Principles and Practice
Ch. 11 - Prob. 11.1QECh. 11 - Prob. 11.2QECh. 11 - Prob. 11.3QECh. 11 - Prob. 11.4QECh. 11 - Prob. 11.5QECh. 11 - Why does a perspiring body achieve greater cooling...Ch. 11 - Prob. 11.7QECh. 11 - Prob. 11.8QECh. 11 - Prob. 11.9QECh. 11 - Prob. 11.10QE
Ch. 11 - Prob. 11.11QECh. 11 - Prob. 11.12QECh. 11 - Prob. 11.13QECh. 11 - Prob. 11.14QECh. 11 - Prob. 11.15QECh. 11 - Prob. 11.16QECh. 11 - Prob. 11.17QECh. 11 - Prob. 11.18QECh. 11 - Prob. 11.19QECh. 11 - Prob. 11.20QECh. 11 - The compounds ethanol (C2H5OH) and dimethyl ether...Ch. 11 - Prob. 11.22QECh. 11 - Prob. 11.23QECh. 11 - An amorphous solid can sometimes be converted to a...Ch. 11 - Prob. 11.25QECh. 11 - Prob. 11.26QECh. 11 - Prob. 11.27QECh. 11 - Prob. 11.28QECh. 11 - Prob. 11.29QECh. 11 - Prob. 11.30QECh. 11 - Prob. 11.31QECh. 11 - Prob. 11.32QECh. 11 - Prob. 11.33QECh. 11 - Prob. 11.34QECh. 11 - Prob. 11.35QECh. 11 - Prob. 11.36QECh. 11 - Prob. 11.37QECh. 11 - Prob. 11.38QECh. 11 - What is the enthalpy change when a 1.00-kg block...Ch. 11 - Prob. 11.40QECh. 11 - Prob. 11.41QECh. 11 - Prob. 11.42QECh. 11 - Prob. 11.43QECh. 11 - Prob. 11.44QECh. 11 - Prob. 11.45QECh. 11 - Prob. 11.46QECh. 11 - Prob. 11.47QECh. 11 - Prob. 11.48QECh. 11 - Identify the kinds of intermolecular forces...Ch. 11 - Prob. 11.50QECh. 11 - Prob. 11.51QECh. 11 - Prob. 11.52QECh. 11 - Prob. 11.53QECh. 11 - Prob. 11.54QECh. 11 - Prob. 11.55QECh. 11 - Prob. 11.56QECh. 11 - Prob. 11.57QECh. 11 - Prob. 11.58QECh. 11 - Prob. 11.59QECh. 11 - Identify the kinds of forces that are most...Ch. 11 - Arrange the following substances in order of...Ch. 11 - Arrange the following substances in order of...Ch. 11 - Prob. 11.63QECh. 11 - Silicon carbide, SiC, is a very hard, high-melting...Ch. 11 - Prob. 11.65QECh. 11 - Calcium oxide consists of a face-centered cubic...Ch. 11 - Prob. 11.67QECh. 11 - Prob. 11.68QECh. 11 - Prob. 11.69QECh. 11 - Prob. 11.70QECh. 11 - Prob. 11.71QECh. 11 - Prob. 11.72QECh. 11 - Prob. 11.73QECh. 11 - Prob. 11.74QECh. 11 - Lithium hydride (LiH) has the sodium chloride...Ch. 11 - Cesium iodide crystallizes as a simple cubic array...Ch. 11 - Palladium has a cubic crystal structure in which...Ch. 11 - Prob. 11.78QECh. 11 - Prob. 11.79QECh. 11 - Prob. 11.80QECh. 11 - Prob. 11.81QECh. 11 - Prob. 11.82QECh. 11 - Prob. 11.83QECh. 11 - Prob. 11.84QECh. 11 - Prob. 11.85QECh. 11 - The coordination number of uniformly sized spheres...Ch. 11 - Prob. 11.87QECh. 11 - Prob. 11.88QECh. 11 - Prob. 11.89QECh. 11 - Prob. 11.90QECh. 11 - Prob. 11.91QECh. 11 - Prob. 11.93QECh. 11 - Prob. 11.94QECh. 11 - A 1.50-g sample of methanol (CH3OH) is placed in...Ch. 11 - Prob. 11.96QECh. 11 - Prob. 11.97QECh. 11 - Prob. 11.98QECh. 11 - Prob. 11.99QECh. 11 - Prob. 11.100QECh. 11 - Prob. 11.103QE
Knowledge Booster
Similar questions
- Calculate the quantity of heating required to convert the water in four ice cubes (60.1 g each) from H2O(s) at 0 °C to H2O(g) at 100. °C. The enthalpy of fusion of ice is 333 J/g and the enthalpy of vaporization of liquid water is 2260 J/g.arrow_forwardArrange the following substances in order of increasing strength of crystal forces: CO2, KCl, H2O, N2, CaO.arrow_forwardUse Figure 11.7 to estimate the boiling point of carbon tetrachloride, CCl4, under an external pressure of 250 mmHg.arrow_forward
- A 22.5-g sample of ice at 0.0 oC is added to 100.0 g of warm water at 35.0 oC, and the final temperature of the mixture is 14.0 oC. (a)How much heat(in Joules)is lost by the warm water? (b) How much heat (in Joules) is absorbed by the melted ice when its temperature increases from 0.0 oC to 14.0 oC? (c) How much heat is absorbed by ice during melting at 0.0 oC? (d) What is the enthalpy of fusion of ice in kJ/mol? (Specific heat of water = 4.184 J/(g.oC)arrow_forwardThe heat of vaporization of water at the normal boiling point, 373.3K, is 40.66kJ/mol. The specific heat capacity of liquid water is 4.184JK-1g-1 and gaseous water is 2.02JK-1g-1. Assume that these values are independent of temperature. What is the heat of vaporization of water at 298.2K ?arrow_forwardCalculate the energy in the form of heat (in kJ) required to change 76.9 g of liquid water at 25.2 °C to ice at –15.2 °C. Assume that no energy in the form of heat is transferred to the environment. (Heat of fusion = 333 J/g; heat of vaporization = 2256 J/g; specific heat capacities: ice = 2.06 J/g⋅K, liquid water = 4.184 J/g⋅K)arrow_forward
- What is the amount of heat in kilojoules required to convert 447.0 g of ice at −15.2°C to liquid water at 35.6°C? The specific heat of ice is 2.03 J/g·°C.The molar heat of fusion of ice is 6010 J/mol. The specific heat of water is 4.184 J/g·°C.arrow_forwardA 10-g ice cube, initially at 0ºC, is melted in 100 g of water that was initially 20ºC. After the ice has melted, the equilibrium temperature is 10.93 ºC. Calculate The total heat lost by the water (the specific heat for water is 4.186 J/g·°C) .The heat gained by the ice cube after it melts (the specific heat for ice is 2.093 J/g·°C). The heat it took to melt the ice (Hint: It takes 334 J of heat energy to melt 1 g of ice). Inside a calorimeter is 100 g of water at 39.8ºC. A 10-g object at 50ºC is placed inside the calorimeter. When equilibrium has been reached, the new temperature of the water and metal object is 40ºC. What type of metal is the object made from? Hint: Use Table 1 in the Introduction for referencearrow_forwardBased on the thermodynamic properties provided for water, determine the amount of energy released for 130.0 g of water to go from 89.0 °C to -12.0 °C. Property Value Units Melting point 0.0 °C Boiling point 100.0 °C ΔHfus 6.01 kJ/mol ΔHvap 40.67 kJ/mol cp (s) 37.1 J/mol · °C cp (l) 75.3 J/mol · °C cp (g) 33.6 J/mol · °Carrow_forward
- Based on the thermodynamic properties provided for water, determine the energy change when the temperature of 0.950 kg of water decreased from 111 °C to 25.0 °C. Property Value Units Melting point 0 °C Boiling point 100.0 °C ΔHfus 6.01 kJ/mol ΔHvap 40.67 kJ/mol cp (s) 37.1 J/mol · °C cp (l) 75.3 J/mol · °C cp (g) 33.6 J/mol · °Carrow_forwardBased on the thermodynamic properties provided for water, determine the energy change when the temperature of 1.45 kg of water decreased from 109 °C to 40.5 °C. Property Value Units Melting point 0 °C Boiling point 100.0 °C ΔHfus 6.01 kJ/mol ΔHvap 40.67 kJ/mol cp (s) 37.1 J/mol · °C cp (l) 75.3 J/mol · °C cp (g) 33.6 J/mol · °C kJarrow_forwardA 0.505 g sample of steam at 104.1 °C is condensed into a container with 5.88 g of water at 14.8 °C. What is the final temperature of the water mixture if no heat is lost? The specific heat of water is 4.18 J g⋅ °C, the specific heat of steam is 2.01 J g⋅ °C, and ΔHvap=−40.7 kJ/mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning