(a)
Interpretation:
The substance that has greater boiling point based on the strength of intermolecular attractions has to be given.
(b)
Interpretation:
The substance that has greater boiling point based on the strength of intermolecular attractions has to be given.
(c)
Interpretation:
The substance that has greater boiling point based on the strength of intermolecular attractions has to be given.
(d)
Interpretation:
The substance that has greater boiling point based on the strength of intermolecular attractions has to be given.
(e)
Interpretation:
The substance that has greater boiling point based on the strength of intermolecular attractions has to be given.
(f)
Interpretation:
The substance that has greater boiling point based on the strength of intermolecular attractions has to be given.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Chemistry: Principles and Practice
- Chloroform, CHCl3, has a normal boiling point of 61C. Its vapor pressure at 43C is 0.526 atm. What is the concentration (in g/L) of CHCl3 when it saturates the air at 27C?arrow_forwardOf the four general types of solids, which one(s) (a) are generally insoluble in water? (b) have very high melting points? (c) conduct electricity as solids?arrow_forward5-106 The normal boiling point of hexane, C6H14, is 69°C, and that of pentane, C5H12, is 36°C. Predict which of these compounds has a higher vapor pressure at 20°C.arrow_forward
- What are intermolecular forces? How do they differ from intramolecular forces? What are dipole-dipole forces? How do typical dipole-dipole forces differ from hydrogen bonding interactions? In what ways are they similar? What are London dispersion forces? How do typical London dispersion forces differ from dipole-dipole forces? In what ways are they similar? Describe the relationship between molecular size and strength of London dispersion forces. Place the major types of intermolecular forces in order of increasing strength. Is there some overlap? That is, can the strongest London dispersion forces be greater than some dipole-dipole forces? Give an example of such an instance.arrow_forwardThe types of intermolecular forces in a substance are identical whether it is a solid, a liquid, or a gas. Why then does a substance change phase from a gas to a liquid or to a solid?arrow_forward8.87 Use the vapor pressure curves illustrated here to answer the questions that follow. (a) What is the vapor pressure of ethanol (C2H5OH) at 60°C? (b) Considering only carbon disulfide (CS2) and ethanol, which has the stranger intermolecular forces in the liquid state? (c) At what temperature does heptane (C7H16) have a vapor pressure of 500 mm Hg? (d) What are the approximate normal boiling pains of each of the three substances? (e) At a pressure of 400 mm Hg and a temperature of 70°C, is each substance a liquid, a gas, or a mixture of liquid and gas?arrow_forward
- Classify each of the following statements as true or false. a Intermolecular attractions are stronger in liquids than in gases. b Substances with weak intermolecular attractions generally have low vapor pressures. c Liquids with high molar heats of vaporization usually are more viscous than liquids with low molar heats of vaporization. d A substance with a relatively high surface tension usually has a very low boiling point. e All other things being equal, hydrogen bonds are weaker than induced dipole or dipole forces. f Induced dipole forces become very strong between large molecules. g Other things being equal, nonpolar molecules have stronger intermolecular attractions than polar molecules. h The essential feature of a dynamic equilibrium is that the rates of opposing changes are equal. i Equilibrium vapor pressure depends on the concentration of a vapor above its own liquid. j The heat of vaporization is equal to the heat of fusion, but with opposite sign. k The boiling point of a liquid is a fixed property of the liquid. l If you break shatter an amorphous solid, it will break in straight lines, but if you break a crystalline solid, it will break in curved lines. m Ionic crystals are seldom soluble in water. n Molecular crystals are nearly always soluble in water. o The numerical value of heat of vaporization is always larger than the numerical value of heat of condensation. p The units of heat of fusion are kJ/gC. q The temperature of water drops while it is freezing. r Specific heat is conerned with a change in temperature.arrow_forwardSilane SiH4, phosphine (PH3), and hydrogen sulfide (H2S) melt at 185 C, 133 C, and 85 C, respectively. What does this suggest about the polar character and intermolecular attractions of the three compounds?arrow_forwardDefine critical temperature and critical pressure. In terms of the kinetic molecular theory, why is it impossible for a substance to exist as a liquid above its critical temperature?arrow_forward
- p-Dichlorobenzene, C6H4Cl2, can be one of the ingredients in mothballs. Its vapor pressure at 20C is 0.40 mm Hg. (a) How many milligrams of C6H4Cl2 will sublime into an evacuated 750-mL flask at 20C? (b) If 5.0 mg of p-dichlorobenzene were put into an evacuated 750-mL flask, how many milligrams would remain in the solid phase? (c) What is the final pressure in an evacuated 500-mL flask at 20C that contains 2.00 mg of p-dichlorobenzene? Will there be any solid in the flask?arrow_forwardDichloromethane, CH2Cl2,is widely used as a degreaser and paint stripper. Its vapor pressure is 381.0 mm Hg at 21.9C and 465.8 mm Hg at 26.90C. Estimate (a) its heat of vaporization (Hvap). (b) its normal boiling point.arrow_forwardSuppose that three unknown pure substances are liquids at room temperature. You make vapor pressure measurements and find that substance Q has a pressure of torr, substance R has a pressure of 42 torr, and substance S has a pressure of 330 torr. If you slowly increase the temperature, which substance will boil first and which will boil last?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning