BIO Pumping Iron. A 72.0-kg weightlifter doing arm raises holds a 7.50-kg weight. Her arm pivots around the elbow joint, starting 40.0° below the horizontal ( Fig. P11.54 ). Biometric measurements have shown that, together, the forearms and the hands account for 6.00% of a person’s weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow joint. The center of mass of this person’s forearm-hand combination is 16.0 cm from the elbow joint, along the bones of the forearm, and she holds the weight 38.0 cm from her elbow joint. (a) Draw a free-body diagram of the forearm, (b) What force does the biceps muscle exert on the forearm? (c) Find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) As the weightlifter raises her arm toward a horizontal position, will the force in the biceps muscle increase, decrease, or stay the same? Why?
BIO Pumping Iron. A 72.0-kg weightlifter doing arm raises holds a 7.50-kg weight. Her arm pivots around the elbow joint, starting 40.0° below the horizontal ( Fig. P11.54 ). Biometric measurements have shown that, together, the forearms and the hands account for 6.00% of a person’s weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow joint. The center of mass of this person’s forearm-hand combination is 16.0 cm from the elbow joint, along the bones of the forearm, and she holds the weight 38.0 cm from her elbow joint. (a) Draw a free-body diagram of the forearm, (b) What force does the biceps muscle exert on the forearm? (c) Find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) As the weightlifter raises her arm toward a horizontal position, will the force in the biceps muscle increase, decrease, or stay the same? Why?
BIO Pumping Iron. A 72.0-kg weightlifter doing arm raises holds a 7.50-kg weight. Her arm pivots around the elbow joint, starting 40.0° below the horizontal (Fig. P11.54). Biometric measurements have shown that, together, the forearms and the hands account for 6.00% of a person’s weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow joint. The center of mass of this person’s forearm-hand combination is 16.0 cm from the elbow joint, along the bones of the forearm, and she holds the weight 38.0 cm from her elbow joint. (a) Draw a free-body diagram of the forearm, (b) What force does the biceps muscle exert on the forearm? (c) Find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) As the weightlifter raises her arm toward a horizontal position, will the force in the biceps muscle increase, decrease, or stay the same? Why?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
Chapter 11 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.