BIO Pumping Iron. A 72.0-kg weightlifter doing arm raises holds a 7.50-kg weight. Her arm pivots around the elbow joint, starting 40.0° below the horizontal ( Fig. P11.54 ). Biometric measurements have shown that, together, the forearms and the hands account for 6.00% of a person’s weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow joint. The center of mass of this person’s forearm-hand combination is 16.0 cm from the elbow joint, along the bones of the forearm, and she holds the weight 38.0 cm from her elbow joint. (a) Draw a free-body diagram of the forearm, (b) What force does the biceps muscle exert on the forearm? (c) Find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) As the weightlifter raises her arm toward a horizontal position, will the force in the biceps muscle increase, decrease, or stay the same? Why?
BIO Pumping Iron. A 72.0-kg weightlifter doing arm raises holds a 7.50-kg weight. Her arm pivots around the elbow joint, starting 40.0° below the horizontal ( Fig. P11.54 ). Biometric measurements have shown that, together, the forearms and the hands account for 6.00% of a person’s weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow joint. The center of mass of this person’s forearm-hand combination is 16.0 cm from the elbow joint, along the bones of the forearm, and she holds the weight 38.0 cm from her elbow joint. (a) Draw a free-body diagram of the forearm, (b) What force does the biceps muscle exert on the forearm? (c) Find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) As the weightlifter raises her arm toward a horizontal position, will the force in the biceps muscle increase, decrease, or stay the same? Why?
BIO Pumping Iron. A 72.0-kg weightlifter doing arm raises holds a 7.50-kg weight. Her arm pivots around the elbow joint, starting 40.0° below the horizontal (Fig. P11.54). Biometric measurements have shown that, together, the forearms and the hands account for 6.00% of a person’s weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow joint. The center of mass of this person’s forearm-hand combination is 16.0 cm from the elbow joint, along the bones of the forearm, and she holds the weight 38.0 cm from her elbow joint. (a) Draw a free-body diagram of the forearm, (b) What force does the biceps muscle exert on the forearm? (c) Find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) As the weightlifter raises her arm toward a horizontal position, will the force in the biceps muscle increase, decrease, or stay the same? Why?
the cable may break and cause severe injury.
cable is more likely to break as compared to the
[1]
ds, inclined at angles of 30° and 50° to the vertical
rings by way of a scaled diagram. [4]
I
30°
T₁
3cm
3.8T2
cm
200 N
50°
at it is headed due North and its airspeed indicat
240 km/h. If there is a wind of 100 km/h from We
e relative to the Earth? [3]
Can you explain this using nodal analysis
With the nodes I have present
And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sources
Chapter 11 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.