University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.11E
A diving board 3.00 m long is supported at a point 1.00 m from the end, and a diver weighing 500 N stands at the free end (Fig. E11.11). The diving board is of uniform cross section and weighs 280 N. Find (a) the force at the support point and (b) the force at the left-hand end.
Figure E11.11
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule05:20
Students have asked these similar questions
The figure shows a 4.20-kg, 1.80-m-long rod hinged to a vertical wall and supported by a thin wire. The wire and rod each make
angles of 45° with the vertical. When a 10.0-kg block is suspended from the midpoint of the rod, the tension T in the supporting
wire is 49.3 N. The wire will break when the tension exceeds 75.0 N.
45°
45°
T
10kg
Tipler & Mosca, Physics for Scientists and
Engineers, 6e © 2008 W.H. Freeman and
Company
What is the maximum distance dmax from the hinge from
which the block can be suspended?
dmax
=
m
The figure shows a 4.20-kg, 1.80-m-long rod hinged to a vertical wall and supported by a thin wire. The wire and rod each make
angles of 45° with the vertical. When a 10.0-kg block is suspended from the midpoint of the rod, the tension T in the supporting
wire is 49.3 N. The wire will break when the tension exceeds 75.0 N.
45°
45°
T
10kg
Tipler & Mosca, Physics for Scientists and
Engineers, 6e © 2008 W.H. Freeman and
Company
What is the maximum distance dmax from the hinge from
which the block can be suspended?
dmax
0.871
Incorrect
m
A 1000 N uniform boom is supported by a cable perpendicular to the boom, as in Figure P8.26. The boom is hinged at the bottom, and a 2100 N weight hangs from its top.
25
63°
Figure P8.26
(a) Find the tension in the supporting cable.
X N
(b) Find the components of the reaction force exerted on the boom by the hinge.
2
N (to the right)
3
N (upward)
Chapter 11 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 11.1 - Which situation satisfies both the first and...Ch. 11.2 - A rock is attached to the left end of a uniform...Ch. 11.3 - A metal advertising sign (weight w) for a...Ch. 11.4 - A copper rod of cross-sectional area 0.500 cm2 and...Ch. 11.5 - While parking your car, you accidentally back into...Ch. 11 - Does a rigid object in uniform rotation about a...Ch. 11 - (a) Is it possible for an object to be in...Ch. 11 - Prob. 11.3DQCh. 11 - Does the center of gravity of a solid body always...Ch. 11 - Prob. 11.5DQ
Ch. 11 - You are balancing a wrench by suspending it at a...Ch. 11 - You can probably stand flatfooted on the floor and...Ch. 11 - Prob. 11.8DQCh. 11 - An object consists of a ball of weight W glued to...Ch. 11 - Prob. 11.10DQCh. 11 - Prob. 11.11DQCh. 11 - In pioneer days, when a Conestoga wagon was stuck...Ch. 11 - The mighty Zimbo claims to have leg muscles so...Ch. 11 - Why is it easier to hold a 10-kg dumbbell in your...Ch. 11 - Certain features of a person, such as height and...Ch. 11 - During pregnancy, women often develop back pains...Ch. 11 - Why is a tapered water glass with a narrow base...Ch. 11 - Prob. 11.18DQCh. 11 - A uniform beam is suspended horizontally and...Ch. 11 - If a metal wire has its length doubled and its...Ch. 11 - A metal wire of diameter D stretches by 0.100 mm...Ch. 11 - Prob. 11.22DQCh. 11 - The material in human bones and elephant bones is...Ch. 11 - There is a small bui appreciable amount of elastic...Ch. 11 - When rubber mounting blocks are used to absorb...Ch. 11 - A 0.120-kg. 50.0-cm-long uniform bar has a small...Ch. 11 - Prob. 11.2ECh. 11 - A uniform rod is 2.00 m long and has mass 1.80 kg....Ch. 11 - A uniform 300-N trapdoor in a floor is hinged at...Ch. 11 - Raising a Ladder. A ladder carried by a fire truck...Ch. 11 - Two people are carrying a uniform wooden board...Ch. 11 - Two people carry a heavy electric motor by placing...Ch. 11 - A 60.0-cm. uniform. 50.0-N shelf is supported...Ch. 11 - A 350-N, uniform. 1.50-m bar is suspended...Ch. 11 - A uniform ladder 5.0 m long rests against a...Ch. 11 - A diving board 3.00 m long is supported at a point...Ch. 11 - A uniform aluminum beam 9.00 m long, weighing 300...Ch. 11 - Find the tension T in each cable and the magnitude...Ch. 11 - The horizontal beam in Fig. E11.14 weighs 190 N....Ch. 11 - The boom shown in Fig. E11.15 weighs 2600 N and is...Ch. 11 - Suppose that you can lift no more than 650 N...Ch. 11 - A 9.00-m-long uniform beam is hinged to a vertical...Ch. 11 - A 15,000-N crane pivots around a friction-free...Ch. 11 - A 3.00-m-long. 190-N, uniform rod at the zoo is...Ch. 11 - A nonuniform beam 4.50 m long and weighing 1.40 kN...Ch. 11 - A Couple. Two forces equal in magnitude and...Ch. 11 - BIO A Good Workout. You are doing exercises on a...Ch. 11 - BIO Neck Muscles. A student bends her head at 40.0...Ch. 11 - BIO Biceps Muscle. A relaxed biceps muscle...Ch. 11 - A circular steel wire 2.00 m long must stretch no...Ch. 11 - Two circular rods, one steel and the other copper,...Ch. 11 - A metal rod that is 4.00 m long and 0.50 cm2 in...Ch. 11 - Stress on a Mountaineers Rope. A nylon rope used...Ch. 11 - In constructing a large mobile, an artist hangs an...Ch. 11 - A vertical, solid steel post 25 cm in diameter and...Ch. 11 - BIO Compression of Human Bone. The bulk modulus...Ch. 11 - A solid gold bar is pulled up from the hold of the...Ch. 11 - A specimen of oil having an initial volume of 600...Ch. 11 - In the Challenger Deep of the Marianas Trench, the...Ch. 11 - A copper cube measures 6.00 cm on each side. The...Ch. 11 - A square steel plate is 10.0 cm on a side and...Ch. 11 - In lab tests on a 9.25-cm cube of a certain...Ch. 11 - A brass wire is to withstand a tensile force of...Ch. 11 - In a materials testing laboratory, a metal wire...Ch. 11 - A 4.0-m-long steel wire has a cross-sectional area...Ch. 11 - CP A steel cable with cross-sectional area 3.00...Ch. 11 - A door 1.00 m wide and 2.00 m high weighs 330 N...Ch. 11 - A box of negligible mass rests at the lett end of...Ch. 11 - Sir Lancelot rides slowly out of the castle at...Ch. 11 - Mountain Climbing. Mountaineers often use a rope...Ch. 11 - A uniform, 8.0-m, 1150-kg beam is hinged to a wall...Ch. 11 - A uniform, 255.N rod that is 2.00 m long carries a...Ch. 11 - A claw hammer is used to pull a nail out of a...Ch. 11 - You open a restaurant and hope to entice customers...Ch. 11 - End A of the bar AB in Fig. P11.50 rests on a...Ch. 11 - BIO Supporting a Broken Leg. A therapist tells a...Ch. 11 - A Truck on a Drawbridge. A loaded cement mixer...Ch. 11 - BIO Leg Raises. In a simplified version of the...Ch. 11 - BIO Pumping Iron. A 72.0-kg weightlifter doing arm...Ch. 11 - Prob. 11.55PCh. 11 - You are asked to design the decorative mobile...Ch. 11 - A uniform, 7.5-m-long beam weighing 6490 N is...Ch. 11 - CP A uniform drawbridge must be held at a 37 angle...Ch. 11 - BIO Tendon-Stretching Exercises. As part of an...Ch. 11 - (a) In Fig. P11.60 a 6.00-m-loog, uniform beam is...Ch. 11 - A uniform, horizontal flagpole 5.00 m long with a...Ch. 11 - A holiday decoration consists of two shiny glass...Ch. 11 - BIO Downward-Facing Dog. The yoga exercise...Ch. 11 - A uniform metal bar that is 8.00 m long and has...Ch. 11 - A worker wants to turn over a uniform. 1250-N,...Ch. 11 - One end of a uniform meter stick is placed against...Ch. 11 - Two friends are carrying a 200-kg crate up a...Ch. 11 - BIO Forearm. In the human arm, the forearm and...Ch. 11 - BIO CALC Refer to the discussion of holding a...Ch. 11 - In a city park a nonuniform wooden beam 4.00 m...Ch. 11 - You are a summer intern for an architectural firm....Ch. 11 - You are trying to raise a bicycle wheel of mass m...Ch. 11 - The Farmyard Gate. A gate 4.00 m wide and 2.00 m...Ch. 11 - If you put a uniform block at the edge of a table,...Ch. 11 - Two uniform, 75.0-g marbles 2.00 cm in diameter...Ch. 11 - Two identical, uniform beams weighing 260 N each...Ch. 11 - An engineer is designing a conveyor system for...Ch. 11 - A weight W is supported by attaching it to a...Ch. 11 - A garage door is mounted on an overhead rail (Fig....Ch. 11 - Pyramid Guilders. Ancient pyramid builders are...Ch. 11 - CP A 12.0-kg mass, fastened to the end of an...Ch. 11 - Hookes Law for a Wire. A wire of length l0 and...Ch. 11 - A 1.05-m-long rod of negligible weight is...Ch. 11 - CP An amusement park ride consists of...Ch. 11 - CP BIO Stress on the Shin Bone. The compressive...Ch. 11 - DATA You are to use a long, thin wire to build a...Ch. 11 - Prob. 11.87PCh. 11 - DATA You are a construction engineer working on...Ch. 11 - Two ladders, 4.00 m and 3.00 m long, are hinged at...Ch. 11 - Knocking Over a Post. One end of a post weighing...Ch. 11 - An angler hangs a 4.50-kg fish from a vertical...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - If he leans slightly farther back (increasing the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
WRITE ABOUT A THEME: INTERACTIONS In a short essay (100-150 words), identify the factor or factors in Figure 53...
Campbell Biology (11th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately.arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = ℓ. A painter of mass m stands on the ladder a distance d from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P10.73 Problems 73 and 74.arrow_forwardProblems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forward
- A stepladder of negligible weight is constructed as shown in Figure P12.40, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P12.40 Problems 40 and 41.arrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forwardRuby, with mass 55.0 kg, is trying to reach a box on a high shelf by standing on her tiptoes. In this position, half her weight is supported by the normal force exerted by the floor on the toes of each foot as shown in Figure P14.75A. This situation can be modeled mechanically by representing the force on Rubys Achilles tendon with FA and the force on her tibia as FT as shown in Figure P14.75B. What is the value of the angle and the magnitudes of the forces FA and FT? FIGURE P14.75arrow_forward
- Why is the following situation impossible? A uniform beam of mass mk = 3.00 kg and length = 1.00 m supports blocks with masses m1 = 5.00 kg and m2 = 15.0 kg at two positions as shown in Figure P12.2. The beam rests on two triangular blocks, with point P a distance d = 0.300 m to the right of the center of gravity of the beam. The position of the object of mass m2 is adjusted along the length of the beam until the normal force on the beam at O is zero. Figure P12.2arrow_forwardA 5.45-N beam of uniform density is 1.60 m long. The beam is supported at an angle of 35.0 by a cable attached to one end. There is a pin through the other end of the beam (Fig. P14.30). Use the values given in the figure to find the tension in the cable. FIGURE P14.30arrow_forwardA uniform beam of length 7.60 m and weight 4.50 102 N is carried by two workers, Sam and Joe, as shown in Figure P12.6. Determine the force that each person exerts on the beam. Figure P12.6arrow_forward
- A wooden door 2.1 m high and 0.90 m wide is hung by two hinges 1.8 m apart. The lower hinge is 15 cm above the bottom of the door. The center of mass of the door is at its geometric center, and the weight of the door is 260 N, which is supported equally by both hinges. Find the horizontal force exerted by each hinge on the door.arrow_forwardAt a museum, a 1300-kg model aircraft is hung from a lightweight beam of length 12.0 m that is free to pivot about its base and is supported by a massless cable (Fig. P14.38). Ignore the mass of the beam. a. What is the tension in the section of the cable between the beam and the wall? b. What are the horizontal and vertical forces that the pivot exerts on the beam? FIGURE P14.38 (a) From the free-body diagram, the angle that the string tension makes with the beam is = 55.0 + 18.0 = 73.0, and the perpendicular component of the string tension is FT sin73.0. Summing torques around the base of the rod gives (Eq. 14.2): =0:(12.0m)(1300kg)(9.81m/s2)cos55.0+FT(12.0m)sin73.0=0FT=(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0FT=7.65103N Figure P14.38ANS (b) Using force balance (Eq. 14.1): Fx=0:FHFTcos18.0=0FH=FTcos18.0=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]cos18.0=7.27103NFy=0:FVFTsin18.0(1300kg)(9.81m/s2)=0 FV=FTsin18.0+(1300kg)gFV=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]sin18.0+(1300kg)(9.81m/s2)FV=1.51104Narrow_forwardIn Example 14.3, we found that one of the steel cables supporting an airplane at the Udvar-Hazy Center was under a tension of 9.30 103 N. Assume the cable has a diameter of 2.30 era and an initial length of 8.00 m before the plane is suspended on the cable. How much longer is the cable when the plane is suspended on it?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY