THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 48P
Cold feedwater enters a 200-kPa open feedwater heater of a regenerative Rankine cycle at 70°C with a flow rate of 10 kg/s. Bleed steam is available from the turbine at 200 kPa and 160°C. At what rate must bleed steam be supplied to the open feedwater heater so the feedwater leaves this unit as a saturated liquid?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an ideal reheat-regenerative Rankine cycle whose boiler pressure is at 15 MPaa and a condenser pressure of 10 kPaa. Steam enters the turbine at
550 °C. The first of the two extractions of steam occurs at 6 MPaa and the remainder is reheated until the temperature becomes 500 °C. The second
extraction occurs at 1 MPaa and again, the remaining steam is reheated up to 480 °C. If the mass flow rate of the throttled steam is 30 kg/s, determine:
the hourly quantities of steam extracted=
kg/hr and
kg/hr
the amount of heat added =
BTU/hr
the amount of heat rejected =
BTU/hr
the net work of the cycle =
BTU/hr
the thermal efficiency of the cycle =
%
3) An ideal Rankine cycle with superheat and reheat has steam entering the turbine at 10 MPa and 440
°C. The steam is extracted and sent to the reheater at a pressure of 1.5 MPa, and returns to the turbine
at 440 °C. The condenser pressure is 20 kPa. The cycle produces 400 MW of net power. Determine
(a) the qualities of steam at (i) high pressure turbine exit, and (ii) low pressure turbine exit
(b) the thermal efficiency, in %
(c) the rate of heat transfer, into the working fluid as it passes through the boiler, in MW
(d) the rate of heat transfer, from the condensing steam as it passes through the condenser, in
MW
(e) the mass flow rate of the condenser cooling water, in kg/ h, if cooling water enters the
condenser at 12 Cand exits at 37 C
A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 50 kPa. At the entrance to the turbine, the temperature is 450C. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.3C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the rate at which heat is added in the boiler, the power required to operate the pumps, the net power produced by the cycle, and the thermal efficiency.
Chapter 10 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Why is excessive moisture in steam undesirable in...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Water enters the boiler of a steady-flow Carnot...Ch. 10.9 - What four processes make up the simple ideal...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...
Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - Compare the pressures at the inlet and the exit of...Ch. 10.9 - The entropy of steam increases in actual steam...Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle which uses water as...Ch. 10.9 - Consider a solar-pond power plant that operates on...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - Is there an optimal pressure for reheating the...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 43PCh. 10.9 - Prob. 44PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Cold feedwater enters a 200-kPa open feedwater...Ch. 10.9 - In a regenerative Rankine cycle. the closed...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A simple ideal Rankine cycle with water as the...Ch. 10.9 - Prob. 64PCh. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 67PCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - What is the difference between cogeneration and...Ch. 10.9 - Prob. 71PCh. 10.9 - Prob. 72PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - An ideal cogeneration steam plant is to generate...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Prob. 80PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - A combined gassteam power cycle uses a simple gas...Ch. 10.9 - Reconsider Prob. 1083. An ideal regenerator is...Ch. 10.9 - Reconsider Prob. 1083. Determine which components...Ch. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Prob. 89PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Prob. 94RPCh. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 101RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 108RPCh. 10.9 - Prob. 109RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A Rankine steam cycle modified for reheat, a...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 118RPCh. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Prob. 126FEPCh. 10.9 - Prob. 127FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a combined gas-steam power plant. Water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steam power plant operating on a simple ideal Rankine cycle maintains the boiler at 6000 kPa, the turbine inlet at 600C, and the condenser at 50 kPa. Compare the thermal efficiency of this cycle when it is operated so that the liquid enters the pump as a saturated liquid against that when the liquid enters the pump 11.3C cooler than a saturated liquid at the condenser pressure.arrow_forwardAn ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and the condenser at 100 kPa. The temperature is 450C at the entrance of the high-pressure and lowpressure turbines. The mass flow rate through the cycle is 1.74 kg/s. Determine the power used by pumps, the power produced by the cycle, the rate of heat transfer in the reheater, and the thermal efficiency of this system.arrow_forwardAn ideal reheat Rankine cycle with water as the working fluid operatesthe boiler at 15,500 kPa, the reheater at 2000 kPa, and the condenser at 100 kPa. The temperature is 450°C at the entrance of the high-pressure and low-pressure turbines. The mass flow rate through the cycle is 1.74 kg/s. Determine the power used by pumps, the power produced by the cycle, the rate of heat transfer in the reheater, and the thermal efficiency of this system.arrow_forward
- please Solve this problem and show the full solution. Thank you very mucharrow_forwardA simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 50 kPa. At the entrance to the turbine, the temperature is 450°C. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 19 kg/s. Determine the rate at which heat is added in the boiler, the power required to operate the pumps, the net power produced by the cycle, and the thermal efficiency. Use steam tables. The rate at which heat is added in the boiler is 4192.12 kW. The power required to operate the pumps is 59354.47 kW. The net power produced by the cycle is -55162.35 ✪ kW. The thermal efficiency of the cycle is 13.16 %.arrow_forwardA simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 3 MPa in the boiler and 30 kPa in the condenser. If the quality at the exit of the turbine cannot be less than 79 percent, what is the maximum thermal efficiency this cycle can have? Use steam tables. The maximum thermal efficiency isarrow_forward
- In a Rankine cycle with reheating, the steam leaves the boiler at 2.5 MPa and 600 ºC and enters the high pressure turbine where it expands to a pressure of 1 MPa to be then subjected to a reheating process from where it leaves at 1 MPa and 600 ° C. The steam at these conditions enters the low pressure turbine and expands up to the condenser pressure of 50 kPa. The heat that is extracted in the condenser is 1500 kJ / s. If the adiabatic efficiency of the turbines and the pump is 95%, determine the total heat flow in kJ / s delivered to the boiler.arrow_forwardAn ideal reheat Rankine cycle with water as the working fluid operates the inlet of the high-pressure turbine at 7000 kPa and 450°C, the inlet of the low-pressure turbine at 500 kPa and 500°C, and the condenser at 10 kPa. Determine the mass flow rate through the boiler needed for this system to produce a net 5000 kW of power and the thermal efficiency of the cycle. Use steam tables. kg/s. The mass flow rate through the boiler needed for this system to produce a net 5000 kW of power is The thermal efficiency is %.arrow_forwardA steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of 6 MPa and 20 kPa. Steam enters the high pressure turbine at 6 MPa and leaves at 2 MPa. Steam is then reheated at constant pressure to same temperature. Heat is transferred to the steam in the boiler at a rate of 58,416 kJ/s. And the mass flow rate of steam through the cycle is 20 kg/s. The moisture content of the steam at the exit of the low-pressure turbine is not to exceed 8 per cent. Steam is cooled in the condenser by the cooling water from a nearby river, and the temperature rise is 12°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine the turbine inlet temperature; the net power output and thermal efficiency; and the minimum mass flow rate of the cooling water requiredarrow_forward
- A steam power plant operates under a regenerative Rankine cycle. Steam at 20 MPa and 600oC enters the turbine and exhausts to a condenser pressure of 25 kPa. Some portion of the steam is extracted at 1 MPa and utilized for feedwater heating. The feedwater leaves the open heater as a saturated liquid at extraction pressure. For a boiler feed water flow rate of 150 kg/s, calculate (a) the mass flow rate of bleed steam, in kg/hr, (b) turbine power output, in MW, (c) the required power input to the pump, in kW, and (d) the plant thermal efficiency.arrow_forwardConsider a reheat Rankine cycle in which the steam enters the high-pressure turbine at 7 MPa and 500°C. After the expansion process in the high-pressure turbine to 400 kPa, the steam is reheated to 500°C in the boiler and then expanded in the low-pressure turbine to 7.5 kPa. Assume that saturated liquid enters the pump, and pumping and expansion processes are isentropic. Calculate the thermal efficiency of the cycle, in %. Cevabınız 45.76 şeklinde olmalıdır. Lütfen 0.4576 gibi yazmayınız. Your answer should be like 45.76. Please, do not write 0.4576.arrow_forwardIn a Rankine cycle with reheating, the steam leaves the boiler at 2.5 MPa and 600 ºC and enters the high-pressure turbine where it expands to a pressure of 1 MPa to be then subjected to a reheating process from where it leaves at 1 MPa and 600 ° C. The steam at these conditions enters the low-pressure turbine and expands up to the condenser pressure of 50 kPa. The heat that is extracted in the condenser is 1500 kJ / s. If the adiabatic efficiency of the turbines and the pump is 95%, determine the total heat flow in kJ / s delivered to the boiler.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY