EBK EXPERIMENTAL ORGANIC CHEMISTRY: A M
EBK EXPERIMENTAL ORGANIC CHEMISTRY: A M
6th Edition
ISBN: 9781305687875
Author: Gilbert
Publisher: CENGAGE LEARNING - CONSIGNMENT
Question
Book Icon
Chapter 10.6, Problem 29E

(a)

Interpretation Introduction

Interpretation: Absorption associated with the carboxylic acid in the IR spectrum of 2,3-dibromo-3-phenylpropanoic acid should be identified.

Concept introduction:The IR spectrum of compound helps to detect the presence of the functional group in molecule. The functional groups that are present in compound absorb certain IR radiation at a characteristic wavelength or wavenumber. For example, the carbonyl group present in compound shows a characteristic peak around 1700 cm1 in the IR spectrum.

(b)

Interpretation Introduction

Interpretation: The various resonances corresponding to 1H NMR of hydrogen nuclei found in 2,3-dibromo-3-phenylpropanoic acid should be assigned.

Concept introduction:The scale used for the NMR spectrum is delta scale. δ denotes parts per million units. The lower values of δ denote upfield while higher values of δ denote downfield region. Each peak in the NMR spectrum corresponds to distinct hydrogen.

The area within each peak corresponds to the number of equivalent protons found at that chemical shift values.

Spin-spin splitting is observed as a result of the interaction amongst non-equivalent NMR active nuclei. This is independent of the strength of the external magnetic field. The formula to calculate the number of peaks in the 1H NMR spectra is as follows:

  Number of peaks=N+1

Where,

  • N is the number of equivalent protons on the adjacent carbon atoms.

Thus if a fragment is CH2CH3 then it would show a three proton triplet due to CH3 and a two proton quartet in accordance with N+1 the rule.

(c)

Interpretation Introduction

Interpretation: The resonances for carbon nuclei 13C NMR should be assigned in 2,3-dibromo-3-phenylpropanoic acid .

Concept introduction:The scale used for the 13C NMR spectrum is delta scale with the only difference as the larger chemical shift. The range lies from δ 0250 denotes parts per million units. The lower values of δ denote upfield while higher values of δ denote downfield region. Each peak in the NMR spectrum corresponds to a distinct carbon.

Thus if a fragment is CH2CH3 then it would show two carbon signals for each of theses carbon.

Blurred answer
Students have asked these similar questions
1. Investigate what an acid-base extraction consists of and what functional groups in substances can present a reaction of this type.
II. Choose one test to differentiate the following pairs of compounds from the given tests. Underline the name of the compound which will yield a positive result. Qualitative Tests: Baeyer's test Ammoniacal silver nitrate test Combustion test Beilstein test Alcoholic silver nitrate test Compounds Cyclohexene Test benzene 1-butyne 2-butyne 2-methylpentane 2-methylpentene 1-chloropentane 2-chloro-2-methylbutane
Dr. Eeva synthesized two aliphatic carboxylic acids known as compounds Y and Z. She wanted to examine one physical property of compound Z respect to acidicity. Draw the possible strtural formulae for compounds Y and Z and identify their IUPAC name. Discuss why compound Z is less acidic than the acid chloride group. Outline how you would prepare compound Y in the laboratory.

Chapter 10 Solutions

EBK EXPERIMENTAL ORGANIC CHEMISTRY: A M

Ch. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - Prob. 10ECh. 10.3 - Prob. 11ECh. 10.3 - Prob. 12ECh. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.3 - Prob. 20ECh. 10.3 - Prob. 21ECh. 10.3 - Prob. 22ECh. 10.3 - Prob. 23ECh. 10.3 - Prob. 24ECh. 10.3 - Prob. 25ECh. 10.3 - Prob. 26ECh. 10.3 - Prob. 27ECh. 10.3 - Prob. 28ECh. 10.3 - Prob. 29ECh. 10.3 - Prob. 30ECh. 10.3 - Prob. 31ECh. 10.3 - Prob. 32ECh. 10.5 - Prob. 1ECh. 10.5 - Prob. 2ECh. 10.5 - Prob. 3ECh. 10.5 - Prob. 4ECh. 10.5 - Prob. 5ECh. 10.5 - Prob. 6ECh. 10.5 - Prob. 7ECh. 10.5 - Prob. 8ECh. 10.5 - Prob. 9ECh. 10.5 - Prob. 10ECh. 10.5 - Prob. 11ECh. 10.5 - Prob. 12ECh. 10.5 - Prob. 14ECh. 10.5 - Prob. 15ECh. 10.5 - Prob. 16ECh. 10.5 - Prob. 17ECh. 10.5 - Prob. 18ECh. 10.5 - Prob. 19ECh. 10.5 - Prob. 20ECh. 10.5 - Prob. 23ECh. 10.6 - Prob. 1ECh. 10.6 - Prob. 2ECh. 10.6 - Prob. 3ECh. 10.6 - Prob. 4ECh. 10.6 - Prob. 5ECh. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - Prob. 8ECh. 10.6 - Prob. 9ECh. 10.6 - Prob. 10ECh. 10.6 - Prob. 11ECh. 10.6 - Prob. 12ECh. 10.6 - Prob. 13ECh. 10.6 - Prob. 14ECh. 10.6 - Prob. 15ECh. 10.6 - Prob. 16ECh. 10.6 - Prob. 17ECh. 10.6 - Prob. 18ECh. 10.6 - Prob. 20ECh. 10.6 - Prob. 21ECh. 10.6 - Prob. 22ECh. 10.6 - Prob. 23ECh. 10.6 - Prob. 24ECh. 10.6 - Prob. 25ECh. 10.6 - Prob. 26ECh. 10.6 - Prob. 28ECh. 10.6 - Prob. 29ECh. 10.6 - Prob. 30ECh. 10.7 - Prob. 1ECh. 10.7 - Prob. 2ECh. 10.7 - Prob. 3ECh. 10.7 - Prob. 4ECh. 10.7 - Prob. 5ECh. 10.7 - Prob. 6ECh. 10.7 - Prob. 7ECh. 10.7 - Prob. 8ECh. 10.7 - Prob. 9ECh. 10.7 - Prob. 10ECh. 10.7 - Prob. 11ECh. 10.7 - Prob. 12ECh. 10.8 - Prob. 1ECh. 10.8 - Prob. 2ECh. 10.8 - Prob. 4ECh. 10.8 - Prob. 5ECh. 10.8 - Prob. 6ECh. 10.8 - Prob. 7ECh. 10.8 - Prob. 8ECh. 10.8 - Prob. 9ECh. 10.8 - Prob. 10ECh. 10.8 - Prob. 11ECh. 10.8 - Prob. 12ECh. 10.8 - Prob. 13ECh. 10.8 - Prob. 14ECh. 10.8 - Prob. 15E
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Macroscale and Microscale Organic Experiments
Chemistry
ISBN:9781305577190
Author:Kenneth L. Williamson, Katherine M. Masters
Publisher:Brooks Cole
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning