Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 93P
SSM A wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is 0.050 kg ᐧ m2. A massless cord wrapped around the wheel is attached to a 2.0 kg block that slides on a horizontal frictionless surface. If a horizontal force of magnitude P = 3.0 N is applied to the block as shown in Fig. 10-56, what is the magnitude of the
Figure 10-56 Problem 93
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A nail is struck in the tread of a tire with radius r=0.17 m. It is held in with maximum frictional force f=0.55 n. The nail has a mass of m=11g. (A) what is the tire treads lowest tangential speed, in meters per second, at which the nail will pull free from the tire? Assume the tire is spinning vertically but not in contact with the lead. (B) at what tangential speed, in meters per second, will the nail pull free when it is at the top of the tire?
A wheel with a radius of 0.5 m and a mass of 100 kg turns freely at 50 rev/min. The wheel can be stopped in 6s by pressing its edge with a glove and exerting an inward radial force of 70N. The effective coefficient of kinetic friction between the wheel and the glove is:
In Fig. 10-34, two particles, each with mass m = 0.85 kg, are fastened to each other, and to a
rotation axis at O, by two thin rods, each with length d= 5.6 cm and mass M = 1.2 kg. The
combination rotates around the rotation axis with the angular speed = 0.30 rad/s. Measured
about O, what are the combination's (a) rotational inertia and (b) kinetic energy?
(1)
M
Rotation axis
2M
m
4
10) The rigid body consists of three particles connected by massless rods. It is to be
rotated about an axis perpendicular to its plane through point P. If M = 0.40 kg, a =
30 cm, and b = 50 cm, how much work is required to take the body from rest to an
angular speed of 5.0 rad/s?
M
4
m
2M
Chapter 10 Solutions
Fundamentals of Physics Extended
Ch. 10 - Figure 10-20 is a graph of the angular velocity...Ch. 10 - Figure 10-21 shows plots of angular position ...Ch. 10 - A force is applied to the rim of a disk that can...Ch. 10 - Figure 10-22b is a graph of the angular position...Ch. 10 - In Fig. 10-23, two forces F1 and F2 act on a disk...Ch. 10 - In the overhead view of Fig. 10-24, five forces of...Ch. 10 - Figure 10-25a is an overhead view of a horizontal...Ch. 10 - Figure l0-25b shows an overhead view of a...Ch. 10 - Figure 10-26 shows a uniform metal plate that had...Ch. 10 - Figure 10-27 shows three flat disks of the same...
Ch. 10 - Figure 10-28a shows a meter stick, hall wood and...Ch. 10 - Figure 10-29 shows three disks, each with a...Ch. 10 - A good baseball pitcher can throw a baseball...Ch. 10 - What is the angular speed of a the second hand, b...Ch. 10 - When a slice of buttered toast is accidentally...Ch. 10 - The angular position of a point on a rotating...Ch. 10 - ILW A diver makes 2.5 revolutions on the way from...Ch. 10 - The angular position of a point on the rim of a...Ch. 10 - The wheel in Fig. 10-30 has eight equally spaced...Ch. 10 - The angular acceleration of a wheel is = 6.0t4 ...Ch. 10 - A drum rotates around its central axis at an...Ch. 10 - Starting from rest, a disk rotates about its...Ch. 10 - A disk, initially rotating at 120 rad/s, is slowed...Ch. 10 - The angular speed of an automobile engine is...Ch. 10 - ILW A flywheel turns through 40 rev as it slows...Ch. 10 - GO A disk rotates about its central axis starling...Ch. 10 - SSM Starting from rest, a wheel has constant =...Ch. 10 - A merry-go-round rotates from rest with an angular...Ch. 10 - At t = 0, a flywheel has an angular velocity of...Ch. 10 - A pulsar is a rapidly rotating neutron star that...Ch. 10 - What are the magnitudes of a the angular velocity,...Ch. 10 - An object rotates about a fixed axis, and the...Ch. 10 - Between 1911 and 1990, the top of the leaning bell...Ch. 10 - An astronaut is tested in a centrifuge with radius...Ch. 10 - SSM WWW A flywheel with a diameter of 1.20 m is...Ch. 10 - A vinyl record is played by rotating the record so...Ch. 10 - SSM a What is the angular speed about the polar...Ch. 10 - The flywheel of a steam engine runs with a...Ch. 10 - A seed is on a turntable rotating at 3313 rev/min,...Ch. 10 - In Fig. 10-31, wheel A of radius rA = 10 cm is...Ch. 10 - Figure 10-32 shows an early method of measuring...Ch. 10 - A gyroscope flywheel of radius 2.83 cm is...Ch. 10 - GO A disk, with a radius of 0.25 m. is to be...Ch. 10 - A car starts from rest and moves around a circular...Ch. 10 - SSM Calculate the rotational inertia of a wheel...Ch. 10 - Figure 10-33 gives angular speed versus time for a...Ch. 10 - SSM Two uniform solid cylinders, each rotating...Ch. 10 - Figure 10-34a shows a disk that can rotate about...Ch. 10 - SSM Calculate the rotational inertia of a meter...Ch. 10 - Figure 10-35 shows three 0.0100 kg particles that...Ch. 10 - Trucks can be run on energy stored in a rotating...Ch. 10 - Figure 10-36 shows an arrangement of 15 identical...Ch. 10 - GO In Fig. 10-37, two particles, each with mass m...Ch. 10 - The masses and coordinates of four particles are...Ch. 10 - SSM WWW The uniform solid block in Fig. 10-38 has...Ch. 10 - Four identical particles of mass 0.50 kg each are...Ch. 10 - SSM ILW The body in Fig. 10-39 is pivoted at O,...Ch. 10 - The body in Fig. 10-40 is pivoted at O. Three...Ch. 10 - SSM A small ball of mass 0.75 kg is attached to...Ch. 10 - The length of a bicycle pedal arm is 0.152 m, and...Ch. 10 - SSM ILW During the launch from a board, a divers...Ch. 10 - If a 32.0 N m torque on a wheel causes angular...Ch. 10 - Prob. 51PCh. 10 - GO In Fig. 10-42, a cylinder having a mass of 2.0...Ch. 10 - GO Figure 10-43 shows a uniform disk that can...Ch. 10 - In a judo foot-sweep move, you sweep your...Ch. 10 - In Fig. 10-45a, an irregularly shaped plastic...Ch. 10 - Figure 10-46 shows particles 1 and 2, each of mass...Ch. 10 - GO A pulley, with a rotational inertia of 1.0 103...Ch. 10 - a IF R= 12 cm, M = 400 g, and m = 50 g in Fig....Ch. 10 - An automobile crankshaft transfers energy from the...Ch. 10 - A thin rod of length 0.75 m and mass 0.42 kg is...Ch. 10 - A 32.0 kg wheel, essentially a thin hoop with...Ch. 10 - In Fig. 10-35, three 0.0100 kg particles have been...Ch. 10 - SSM ILW A meter stick is held vertically with one...Ch. 10 - A uniform cylinder of radius 10 cm and mass 20 kg...Ch. 10 - GO A tall, cylindrical chimney fall;; over when...Ch. 10 - GO A uniform spherical shell of mass M = 4.5 kg...Ch. 10 - GO Figure 10-48 shows a rigid assembly of a thin...Ch. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - A wheel, starling from rest, rotates with a...Ch. 10 - SSM In Fig. 10-50, two 6.20 kg blocks are...Ch. 10 - Prob. 72PCh. 10 - A uniform helicopter rotor blade is 7.80 m long,...Ch. 10 - Prob. 74PCh. 10 - Prob. 75PCh. 10 - Starting from rest at t = 0, a wheel undergoes a...Ch. 10 - SSM A record turntable rotating at 3313 rev/min...Ch. 10 - Prob. 78PCh. 10 - Prob. 79PCh. 10 - A disk rotates al constant angular acceleration,...Ch. 10 - GO The thin uniform rod in Fig. 10-53 has length...Ch. 10 - Prob. 82PCh. 10 - Prob. 83PCh. 10 - At 7:14 A.M. on June 30, 1908, a huge explosion...Ch. 10 - A golf ball is launched at an angle of 20 to the...Ch. 10 - Prob. 86PCh. 10 - GO IN Fig. 10-55, a wheel of radius 0.20 m is...Ch. 10 - A thin spherical shell has a radius of 1.90 m. An...Ch. 10 - Prob. 89PCh. 10 - The flywheel of an engine is rotating at 25.0...Ch. 10 - SSM In Fig. 10-19a, a wheel of radius 0.20 m is...Ch. 10 - Our Sun is 23 104 ly light-years from the center...Ch. 10 - SSM A wheel of radius 0.20 m is mounted on a...Ch. 10 - If an airplane propeller rotates at 2000 rev/min...Ch. 10 - The rigid body shown in Fig. 10-57 consists of...Ch. 10 - Beverage engineering. The pull tab was a major...Ch. 10 - Figure 10-58 shows a propeller blade that rotates...Ch. 10 - A yo-yo-shaped device mounted on a horizontal...Ch. 10 - Prob. 99PCh. 10 - Two thin rods each of mass 0.20 kg are joined...Ch. 10 - In Fig. 10-61, four pulleys are connected by two...Ch. 10 - Prob. 102PCh. 10 - In Fig. 10-63, a thin uniform rod mass 3.0 kg,...Ch. 10 - Prob. 104PCh. 10 - Prob. 105PCh. 10 - A point on the rim of a 0.75-m-diameler grinding...Ch. 10 - A pulley wheel that is 8.0 cm in diameter has a...Ch. 10 - A vinyl record on a turntable rotates at 3313...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 18-37. The assembly consists of a 3-kg pulley A and 10-kg pulley B. If a 2-kg block is suspended from the cord, determine the distance the block must descend, starting from rest, in order to cause B to have an angular velocity of 6 rad/s. Neglect the mass of the cord and treat the pulleys as thin disks. No slipping occurs. 100 mm 30 mmarrow_forwardThree forces A, B, C corresponding to three steel cables are acting on a joint, as shown. Force A=200N is described by (1) 0=45° which is a CcW rotation on the x-z plane from +x, and (2) an angle of depression p=55°. Force B=150N is on y-z plane; h = 2m and v = 5m. Force C = -100i-100j+100k N y A v B h 1. Which of the following is closest to the unit vector of force A? 0.406i-0.406j+0.819k 0.679i-0.611j+0.406k 0.406i-0.406j+0.574k 0.406i-0.819j-0.406karrow_forwardOn a vertical plane, a uniform rigid disk rolls without slipping on an inclined surface under the effect of its own weight. The radius r of the disk equals 0.75 m and the mass m equals 10kg. Determine the acceleration of the disk, the necessary friction force at the point of contact between the disk and the inclined plane, and the needed minimum coefficient of static friction. If the disk were rolling up the inclined surface with an angular speed @= 2 rad / sec, determine how far up the surface the disk would travel while still rolling without slipping. 300arrow_forward
- *12-168. A particle travels along the portion of the "four- leaf rose" defined by the equation r= (5 cos 20) m. If the angular velocity of the radial coordinate line is 0=(31²) rad/s, where t is in seconds, determine the radial and transverse components of the particle's velocity and acceleration at the instant = 30°. When t=0,0=0. ① r = (5 cos 20) Prob. 12-168arrow_forward65. ssm A 220-kg speedboat is negotiating a circular turn (radius = 32 m) around a buoy. During the turn, the engine causes a net tangential force of magnitude 550 N to be applied to the boat. The initial tangential speed of the boat going into the turn is 5.0 m/s. (a) Find the tangential ac- celeration. (b) After the boat is 2.0 s into the turn, find the centripetal acceleration.arrow_forwardThree forces A, B, C corresponding to three steel cables are acting on a joint, as shown. Force A=200N is described by (1) 0=45° which is a CcW rotation on the x-z plane from +x, and (2) an angle of depression p=55°. Force B=150N is on y-z plane; h = 2m and v = 5m. Force C = -100i-100j+100k N y A в h 3. Which of the following is the closest representation of force B ? 139.3j+55.7k N -55.7j+139.3k N -139.3j+55.7k N 139.3i+55.7k Narrow_forward
- Three forces A, B, C corresponding to three steel cables are acting on a joint, as shown. Force A=200N is described by (1) 0=45° which is a CCW rotation on the x-z plane from +x, and (2) an angle of depression p=55°. Force B=150N is on y-z plane; h = 2m and v = 5m. Force C = -100i-100j+100k N y B h 5. Which of the following steps is/are INCORRECT when getting the resultant of multiple concurrent forces in space? Consider x-y-z rectangular coordinates. Items below are NOT in succession. 5-1. Resolve the given forces into x-y-z rectangular coordinates. • 5-2. Compute the components of the resultant Rx, Ry, Rz by vector-adding all x components to get Rx, all y components to get Ry, and all z components to get Rz • 5-3. The magnitude of the resultant is taken as the square root of the sum of squares of Rx, Ry, Rz, and the direction is arctan(Ry/Rx) item 5-1 item 5-2 items 5-1 and 5-2 item 5-3arrow_forwardA lamina V of uniform mass density and total mass M kilograms occupies the region between y = l - x 2 and the x-axis (with distance measured in meters). Calculate the rotational kinetic energy if V rotates with angular velocity w = 4 radians per second about: (a) the x-axis. (b) the z-axis.arrow_forwardAnswer must be according the correct signifcant numbers.arrow_forward
- 13-62. A girl having a mass of 25 kg sits at the edge of the merry-go-round so her center of mass G is at a distance of 1.5 m from the axis of rotation. If the angular motion of the platform is slowly increased so that the girl's tangential component of acceleration can be neglected, determine the maximum speed which she can have before she begins to slip off the merry-go-round. The coefficient of static friction between the girl and the merry-go-round is µ, = 0.3. _1.5 marrow_forward43 SSM ww The uniform solid Rotation block in Fig. 10-38 has mass 0.172 kg axis and edge lengths a = 3.5 cm, b= 8.4 cm, and c = 1.4 cm. Calculate its rota- tional inertia about an axis through one corner and perpendicular to the large faces.arrow_forwardYou are trying to raise a bicycle wheel of mass m and radius R up over a curb of height h. To do this, you apply a horizontal force F S . What is the smallest magnitude of the force F S that will succeed in raising the wheel onto the curb when the force is applied (a) at the center of the wheel and (b) at the top of the wheel? (c) In which case is less force required?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License