Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 43P
SSM WWW The uniform solid block in Fig. 10-38 has mass 0.172 kg and edge lengths a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculate its rotational inertia about an axis through one corner and perpendicular to the large faces.
Figure 10-38 Problem 43.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
43 SSM ww The uniform solid Rotation
block in Fig. 10-38 has mass 0.172 kg axis
and edge lengths a = 3.5 cm, b= 8.4
cm, and c = 1.4 cm. Calculate its rota-
tional inertia about an axis through
one corner and perpendicular to the
large faces.
Figure 10-33 gives angular speed versus time for a thin rod that rotates around one end. The
scale on the w axis is set by ws = 6.0 rad/s. (a) What is the magnitude of the rod's angular
acceleration? (b) At t = 4.0 s, the rod has rotational kinetic energy of 1.60 J. What is its kinetic
energy at t = 0?
| t (s)
4
Figure 10-33 Problem 34.
In Fig. 11-31, wheel A of radius ra - 12 cm is coupled by belt B te wheet Cof radius re- 20 cm. Wheel A Increases its angular epeed from rest at a constant rate of 1.6 rad/s Find the time for
wheel C to reach a rotational speed of 100 rev/min, assuming the belt does not slip. (Hint: Ir the belt does not slip, the inear speeds at the tims of the two wheels must be equal.)
Figure 11-31
Chapter 10 Solutions
Fundamentals of Physics Extended
Ch. 10 - Figure 10-20 is a graph of the angular velocity...Ch. 10 - Figure 10-21 shows plots of angular position ...Ch. 10 - A force is applied to the rim of a disk that can...Ch. 10 - Figure 10-22b is a graph of the angular position...Ch. 10 - In Fig. 10-23, two forces F1 and F2 act on a disk...Ch. 10 - In the overhead view of Fig. 10-24, five forces of...Ch. 10 - Figure 10-25a is an overhead view of a horizontal...Ch. 10 - Figure l0-25b shows an overhead view of a...Ch. 10 - Figure 10-26 shows a uniform metal plate that had...Ch. 10 - Figure 10-27 shows three flat disks of the same...
Ch. 10 - Figure 10-28a shows a meter stick, hall wood and...Ch. 10 - Figure 10-29 shows three disks, each with a...Ch. 10 - A good baseball pitcher can throw a baseball...Ch. 10 - What is the angular speed of a the second hand, b...Ch. 10 - When a slice of buttered toast is accidentally...Ch. 10 - The angular position of a point on a rotating...Ch. 10 - ILW A diver makes 2.5 revolutions on the way from...Ch. 10 - The angular position of a point on the rim of a...Ch. 10 - The wheel in Fig. 10-30 has eight equally spaced...Ch. 10 - The angular acceleration of a wheel is = 6.0t4 ...Ch. 10 - A drum rotates around its central axis at an...Ch. 10 - Starting from rest, a disk rotates about its...Ch. 10 - A disk, initially rotating at 120 rad/s, is slowed...Ch. 10 - The angular speed of an automobile engine is...Ch. 10 - ILW A flywheel turns through 40 rev as it slows...Ch. 10 - GO A disk rotates about its central axis starling...Ch. 10 - SSM Starting from rest, a wheel has constant =...Ch. 10 - A merry-go-round rotates from rest with an angular...Ch. 10 - At t = 0, a flywheel has an angular velocity of...Ch. 10 - A pulsar is a rapidly rotating neutron star that...Ch. 10 - What are the magnitudes of a the angular velocity,...Ch. 10 - An object rotates about a fixed axis, and the...Ch. 10 - Between 1911 and 1990, the top of the leaning bell...Ch. 10 - An astronaut is tested in a centrifuge with radius...Ch. 10 - SSM WWW A flywheel with a diameter of 1.20 m is...Ch. 10 - A vinyl record is played by rotating the record so...Ch. 10 - SSM a What is the angular speed about the polar...Ch. 10 - The flywheel of a steam engine runs with a...Ch. 10 - A seed is on a turntable rotating at 3313 rev/min,...Ch. 10 - In Fig. 10-31, wheel A of radius rA = 10 cm is...Ch. 10 - Figure 10-32 shows an early method of measuring...Ch. 10 - A gyroscope flywheel of radius 2.83 cm is...Ch. 10 - GO A disk, with a radius of 0.25 m. is to be...Ch. 10 - A car starts from rest and moves around a circular...Ch. 10 - SSM Calculate the rotational inertia of a wheel...Ch. 10 - Figure 10-33 gives angular speed versus time for a...Ch. 10 - SSM Two uniform solid cylinders, each rotating...Ch. 10 - Figure 10-34a shows a disk that can rotate about...Ch. 10 - SSM Calculate the rotational inertia of a meter...Ch. 10 - Figure 10-35 shows three 0.0100 kg particles that...Ch. 10 - Trucks can be run on energy stored in a rotating...Ch. 10 - Figure 10-36 shows an arrangement of 15 identical...Ch. 10 - GO In Fig. 10-37, two particles, each with mass m...Ch. 10 - The masses and coordinates of four particles are...Ch. 10 - SSM WWW The uniform solid block in Fig. 10-38 has...Ch. 10 - Four identical particles of mass 0.50 kg each are...Ch. 10 - SSM ILW The body in Fig. 10-39 is pivoted at O,...Ch. 10 - The body in Fig. 10-40 is pivoted at O. Three...Ch. 10 - SSM A small ball of mass 0.75 kg is attached to...Ch. 10 - The length of a bicycle pedal arm is 0.152 m, and...Ch. 10 - SSM ILW During the launch from a board, a divers...Ch. 10 - If a 32.0 N m torque on a wheel causes angular...Ch. 10 - Prob. 51PCh. 10 - GO In Fig. 10-42, a cylinder having a mass of 2.0...Ch. 10 - GO Figure 10-43 shows a uniform disk that can...Ch. 10 - In a judo foot-sweep move, you sweep your...Ch. 10 - In Fig. 10-45a, an irregularly shaped plastic...Ch. 10 - Figure 10-46 shows particles 1 and 2, each of mass...Ch. 10 - GO A pulley, with a rotational inertia of 1.0 103...Ch. 10 - a IF R= 12 cm, M = 400 g, and m = 50 g in Fig....Ch. 10 - An automobile crankshaft transfers energy from the...Ch. 10 - A thin rod of length 0.75 m and mass 0.42 kg is...Ch. 10 - A 32.0 kg wheel, essentially a thin hoop with...Ch. 10 - In Fig. 10-35, three 0.0100 kg particles have been...Ch. 10 - SSM ILW A meter stick is held vertically with one...Ch. 10 - A uniform cylinder of radius 10 cm and mass 20 kg...Ch. 10 - GO A tall, cylindrical chimney fall;; over when...Ch. 10 - GO A uniform spherical shell of mass M = 4.5 kg...Ch. 10 - GO Figure 10-48 shows a rigid assembly of a thin...Ch. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - A wheel, starling from rest, rotates with a...Ch. 10 - SSM In Fig. 10-50, two 6.20 kg blocks are...Ch. 10 - Prob. 72PCh. 10 - A uniform helicopter rotor blade is 7.80 m long,...Ch. 10 - Prob. 74PCh. 10 - Prob. 75PCh. 10 - Starting from rest at t = 0, a wheel undergoes a...Ch. 10 - SSM A record turntable rotating at 3313 rev/min...Ch. 10 - Prob. 78PCh. 10 - Prob. 79PCh. 10 - A disk rotates al constant angular acceleration,...Ch. 10 - GO The thin uniform rod in Fig. 10-53 has length...Ch. 10 - Prob. 82PCh. 10 - Prob. 83PCh. 10 - At 7:14 A.M. on June 30, 1908, a huge explosion...Ch. 10 - A golf ball is launched at an angle of 20 to the...Ch. 10 - Prob. 86PCh. 10 - GO IN Fig. 10-55, a wheel of radius 0.20 m is...Ch. 10 - A thin spherical shell has a radius of 1.90 m. An...Ch. 10 - Prob. 89PCh. 10 - The flywheel of an engine is rotating at 25.0...Ch. 10 - SSM In Fig. 10-19a, a wheel of radius 0.20 m is...Ch. 10 - Our Sun is 23 104 ly light-years from the center...Ch. 10 - SSM A wheel of radius 0.20 m is mounted on a...Ch. 10 - If an airplane propeller rotates at 2000 rev/min...Ch. 10 - The rigid body shown in Fig. 10-57 consists of...Ch. 10 - Beverage engineering. The pull tab was a major...Ch. 10 - Figure 10-58 shows a propeller blade that rotates...Ch. 10 - A yo-yo-shaped device mounted on a horizontal...Ch. 10 - Prob. 99PCh. 10 - Two thin rods each of mass 0.20 kg are joined...Ch. 10 - In Fig. 10-61, four pulleys are connected by two...Ch. 10 - Prob. 102PCh. 10 - In Fig. 10-63, a thin uniform rod mass 3.0 kg,...Ch. 10 - Prob. 104PCh. 10 - Prob. 105PCh. 10 - A point on the rim of a 0.75-m-diameler grinding...Ch. 10 - A pulley wheel that is 8.0 cm in diameter has a...Ch. 10 - A vinyl record on a turntable rotates at 3313...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Rotational Inertia Problems 5 and 6 are paired. 5. N A system consists of four boxes modeled as particles connected by very lightweight, stiff rods (Fig. P13.5). The system rotates around the z axis, which points out of the page. Each particle has a mass of 5.00 kg. The distances from the z axis to each particle are r1 = 32.0 cm, r2 = 16.0 cm, r3 = 17.0 cm, and r4 = 34.0 cm. Find the rotational inertia of the system around the z axis. 6. N Use the information in Problem 5 to find the rotational inertia of the system around particle 1. FIGURE P13.5 Problems 5 and 6.arrow_forwardA wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forward
- In Fig. 10-34, two particles, each with mass m = 0.85 kg, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length d= 5.6 cm and mass M = 1.2 kg. The combination rotates around the rotation axis with the angular speed = 0.30 rad/s. Measured about O, what are the combination's (a) rotational inertia and (b) kinetic energy? (1) M Rotation axis 2M m 4 10) The rigid body consists of three particles connected by massless rods. It is to be rotated about an axis perpendicular to its plane through point P. If M = 0.40 kg, a = 30 cm, and b = 50 cm, how much work is required to take the body from rest to an angular speed of 5.0 rad/s? M 4 m 2Marrow_forwardA uniform slender rod of length L = 36 in. and weight W = 4 lb hangs freely from a hinge at A. If a force P of magnitude 1.5 lb is applied at B horizontally to the left (h = L), determine (a) the angular acceleration of the rod, (b) the components of the reaction at A.arrow_forwardn41 G0 In Fig. 10-37, two particles, each with mass m = 0.85 kg, are fas- tened to each other, and to a rotation axis at 0, by two thin rods, each with length d = 5.6 cm and mass M = 1.2 kg. The combination rotates M. Rotation axis around the rotation axis with the an- gular speed w = 0.30 rad/s. Measured about O, what are the combination's (a) rotational inertia and (b) kinetic energy? Figure 10-37 Problem 41.arrow_forward
- As shown in Fig. 10-3, a mass m = 400 g hangs from the rim of a wheel of radius r = 15 cm. When released from rest, the mass falls 2.0 m in 6.5 s. Find the moment of inertia of the wheel. B 400 g mg FT FTarrow_forwardUnless otherwise stated, assume the density is constantarrow_forwardA thin uniform rod AB of mass m and length L is hinged at one end A to the level floor. Initially it stands vertically and is allowed to fall freely to the floor in the vertical plane. The angular velocity of the rod, when its end B strikes the floor is (g acceleration due to gravity)arrow_forward
- The spool has a mass, m, and a radius of gyration, kG. An inextensible is wrapped around the inner diameter of the spool and is attached to the wall a point A. The coefficient of friction between the floor and the spool is mu. If the spool has the initial angular velocity given as omega naught, how far will the center, G, move before stopping?arrow_forwardA solid cylinder of mass 3.4 kg and radius 4.8 cm rolls down an Inclined plane of height 9.1 cm without slipping. then the speed of its center of mass when the cylinder reaches the bottom in (m/s):arrow_forwardA uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see the figure). The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg-m2. The wheel is initially at rest at the top of a surface that is inclined at angle 0 = 24.4° with the horizontal; the axle rests on the surface while the wheel extends into a groove in the surface without touching the surface. Once released, the axle rolls down along the surface smoothly and without slipping. When the wheel-axle combination has moved down the surface by 6.08 m, what are (a) its rotational kinetic energy and (b) its translational kinetic energy? Wheel- Axle -Groove (a) Number i Units (b) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License