Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10, Problem 48P
To determine

The speed of fluid leaving the opening at the bottom is v1=2gh1(A1A2)2 , that should be proved and also, under the given condition the flow remains steady and laminar is to be proved also.

Expert Solution & Answer
Check Mark

Explanation of Solution

Introduction:

According to the Bernoulli’s principle, the pressure inside the fluid system inversely deals with the volume of the system. The Pressure is decreased with the increase in the volume of the fluid system and vice-versa. When there is a pressure difference across the body, it causes a push on the body from the region of high pressure to that of low pressure.

The Bernoulli’s equation is written as,

  P1+ρgh1+12ρv12=P2+ρgh2+12ρv22

To prove:

The situation which sown in the figure, v1andv2 are the speed of water coming out from the opening and top surfaces respectively. The pressure above the top surfaces is P0 atmospheric.

Now according to the Bernoulli’s equation,

  P0+ρgh1+12ρv12=P0+ρgh2+12ρv22P0+12ρv22+ρg(h2h1)=P0+12ρv12.....(1)

From the equation of continuity,

  A1v1=A2v2v2=A1A2v1....(2)

From the equations (1) and (2), the resulted expression is

  P0+ρgh1+12ρv12=P0+ρgh2+12ρv22P0+12ρv22+ρg(h2h1)=P0+12ρv1212ρv1212ρv22=ρgh12v1212v22=gh12v1212(A1A2v1)2=ghv12(1(A1A2)2)=2gh

  v12=2gh1(A1A2)2v1=2gh1(A1A2)2

Where, h=y2y1

By assuming the given condition,

  A1<<,A2A1A2<<<1

So, the ratio of area is neglected as compared to the one. So, the seed of fluid becomes,

  v1=2gh

Hence, the flow remains nearly laminar and steady.

Conclusion:

Hence, the speed of fluid leaving the opening at the bottom v1=2gh1(A1A2)2 is proved and hence the flow remains nearly laminar and steady.

Chapter 10 Solutions

Physics: Principles with Applications

Ch. 10 - Prob. 11QCh. 10 - Prob. 12QCh. 10 - Prob. 13QCh. 10 - Prob. 14QCh. 10 - Prob. 15QCh. 10 - Prob. 16QCh. 10 - Prob. 17QCh. 10 - Prob. 18QCh. 10 - Prob. 19QCh. 10 - Prob. 20QCh. 10 - Prob. 21QCh. 10 - Prob. 22QCh. 10 - Prob. 23QCh. 10 - Prob. 24QCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - Prob. 14PCh. 10 - Prob. 15PCh. 10 - Prob. 16PCh. 10 - Prob. 17PCh. 10 - Prob. 18PCh. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Prob. 28PCh. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - Prob. 59PCh. 10 - Prob. 60PCh. 10 - Prob. 61PCh. 10 - Prob. 62PCh. 10 - Prob. 63GPCh. 10 - Prob. 64GPCh. 10 - Prob. 65GPCh. 10 - Prob. 66GPCh. 10 - Prob. 67GPCh. 10 - Prob. 68GPCh. 10 - Prob. 69GPCh. 10 - Prob. 70GPCh. 10 - Prob. 71GPCh. 10 - Prob. 72GPCh. 10 - Prob. 73GPCh. 10 - Prob. 74GPCh. 10 - Prob. 75GPCh. 10 - Prob. 76GPCh. 10 - Prob. 77GPCh. 10 - Prob. 78GPCh. 10 - Prob. 79GPCh. 10 - Prob. 80GPCh. 10 - Prob. 81GPCh. 10 - Prob. 82GPCh. 10 - Prob. 83GPCh. 10 - Prob. 84GPCh. 10 - Prob. 85GPCh. 10 - Prob. 86GPCh. 10 - Prob. 87GPCh. 10 - Prob. 88GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY