
(a)
To state: the dimension of the matrix.
(a)

Answer to Problem 20RE
The dimension of the matrix is
Explanation of Solution
Given:
Calculation:
Consider the following matrix:
The dimension of a matrix is given by
In matrix
Number of columns,
Thus, the dimension of the matrix is
Conclusion:
The dimension of the matrix is
(b)
To explain: whether the matrix is in row-echelon form
(b)

Answer to Problem 20RE
The matrix is not in row-echelon form
Explanation of Solution
Given:
Calculation:
A matrix that satisfies the following conditions is said to be in row-echelon form:
(1) In each row, the first non-zero number should be
(2) The leading entry in each row is to the right of that in the row immediately above it
(3) Rows whose elements are all zeros are at the bottom of the matrix
(4) All elements above and below the leading entry are
The first three conditions should be satisfied for the matrix to be in row-echelon form and if the fourth condition is also satisfied then the matrix is in reduced row-echelon form.
Consider the following matrix:
As the first non-zero number in the second row is not
Hence the matrix is not in row-echelon form.
Conclusion:
The matrix is not in row-echelon form
(c)
To explain: whether the matrix is in reduced row-echelon form
(c)

Answer to Problem 20RE
The matrix is not in reduced row-echelon form
Explanation of Solution
Given:
Calculation:
In reduced row-echelon form, leading
Along with this, all the three conditions should also be satisfied.
Consider the following matrix:
Matrix
Hence the matrix is not in reduced row-echelon form.
Conclusion:
The matrix is not in reduced row-echelon form
(d)
To write: the system of equations
(d)

Answer to Problem 20RE
The system of equations for which the matrix
Explanation of Solution
Given:
Calculation:
Consider the following matrix:
Augmented matrix consists of the coefficients and constants of the system of equations.
Thus, the system of equations for which the matrix
Conclusion:
The system of equations for which the matrix
Chapter 10 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- The spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardshow sketcharrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardQuestion 1: Evaluate the following indefinite integrals. a) (5 points) sin(2x) 1 + cos² (x) dx b) (5 points) t(2t+5)³ dt c) (5 points) √ (In(v²)+1) 4 -dv ขarrow_forwardFind the indefinite integral. Check Answer: In(5x) dx xarrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardHere is a region R in Quadrant I. y 2.0 T 1.5 1.0 0.5 0.0 + 55 0.0 0.5 1.0 1.5 2.0 X It is bounded by y = x¹/3, y = 1, and x = 0. We want to evaluate this double integral. ONLY ONE order of integration will work. Good luck! The dA =???arrow_forward43–46. Directions of change Consider the following functions f and points P. Sketch the xy-plane showing P and the level curve through P. Indicate (as in Figure 15.52) the directions of maximum increase, maximum decrease, and no change for f. ■ 45. f(x, y) = x² + xy + y² + 7; P(−3, 3)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





