Concept explainers
(a)
Interpretation:
The ground state configuration of germanium atom has to be predicted.
Concept introduction:
Electronic configuration: The electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals.
Electrons occupy the lowest energy orbitals. The increasing order of orbital energy is
The energy order of the orbital for the first three periods is as follows,
The orbital which is closer to the nucleus has lower energy; therefore the
In general, the orbitals can hold maximum of two electrons, the two electrons must have opposite spin.
The subshell ordering by Aufbau principle is given below,
(a)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The germanium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of germanium atom is
Germanium belongs to Period
The electronic configuration also can be written as follows,
(b)
Interpretation:
The ground state configuration of cesium atom has to be predicted.
Concept introduction:
Refer to part (a).
(b)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The cesium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of cesium atom is
Cesium belongs to Period
The electronic configuration also can be written as follows,
(c)
Interpretation:
The ground state configuration of iridium atom has to be predicted.
Concept introduction:
Refer to part (a).
(c)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The iridium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of iridium atom is
It has a xenon core with twenty three additional valence electrons.
The electronic configuration also can be written as follows,
(d)
Interpretation:
The ground state configuration of tellurium atom has to be predicted.
Concept introduction:
Refer to part (a).
(d)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The tellurium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of tellurium atom is
Tellurium belongs to Period
The electronic configuration also can be written as follows,
(e)
Interpretation:
The ground state configuration of thallium atom has to be predicted.
Concept introduction:
Refer to part (a).
(e)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The thallium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of thallium atom is
Thallium belongs to Period
The electronic configuration also can be written as follows,
(f)
Interpretation:
The ground state configuration of plutonium atom has to be predicted.
Concept introduction:
Refer to part (a).
(f)

Explanation of Solution
The electronic configuration is depends on the electrons in the atom. The plutonium atom has
The subshell ordering by Aufbau principle is given below;
Therefore ground state electronic configuration of plutonium atom is
Plutonium has radon core with eighteen additional valence electrons.
The electronic configuration also can be written as follows,
Want to see more full solutions like this?
Chapter 1 Solutions
CHEMICAL PRINCIPLES (LL) W/ACCESS
- The fire releases 2.80 x 107 Joules of heat energy for each liter of oil burned. The water starts out at 24.5 °C, raising the water's temperature up to 100 °C, and then raises the temperature of the resulting steam up to 325 °C. How many liters of water will be needed to absorb the heat from the fire in this way, for each 1.0 liter of crude oil burned? 4186 J/(kg°C) = heat of water 2020 J/(kg°C) = heat of steam 2,256,000 (i.e. 2.256 x 106) J/kg = latent heat of vaporization for water (at the boiling point of 100 °C).arrow_forward6 Which of the following are likely to be significant resonance structures of a resonance hybrid? Draw another resonance structure for each of the compounds you select as being a resonance form. (A Br: Br: A B C D Earrow_forwardWrite the systematic (IUPAC) name for the following organic molecules. Note for advanced students: you do not need to include any E or Z prefixes in your names. Br structure Br Br Oweuarrow_forward
- Conservation of mass was discussed in the background. Describe how conservation of mass (actual, not theoretical) could be checked in the experiment performed.arrow_forwardWhat impact would adding twice as much Na2CO3 than required for stoichiometric quantities have on the quantity of product produced? Initial results attachedarrow_forwardGiven that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield. Results are attached form experimentarrow_forward
- 5) Calculate the flux of oxygen between the ocean and the atmosphere(2 pts), given that: (from Box 5.1, pg. 88 of your text): Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturated What is flux if the temperature is 10°C ? (2 pts) (Hint: use the same density in your calculations). Why do your calculated values make sense (or not) based on what you know about the relationship between gas solubility and temperature (1 pt)?arrow_forwardFind a molecular formula for these unknownsarrow_forward(ME EX2) Prblms 8-11 Can you please explain problems 8 -11 to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Don't used hand raitingarrow_forwardThe following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




