Concept explainers
(a)
Interpretation:
From the given set of four quantum numbers, it has to be identified that whether it is forbidden for an electron in an atom or not.
Concept Introduction:
There are four set of quantum numbers present for explaining the distribution of electron density in an atom. They are principal quantum number,
For a given value of
(b)
Interpretation:
From the given set of four quantum numbers, it has to be identified that whether it is forbidden for an electron in an atom or not.
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
From the given set of four quantum numbers, it has to be identified that whether it is forbidden for an electron in an atom or not.
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
CHEMICAL PRINCIPLES (LL) W/ACCESS
- Which of the following sets of quantum numbers correctly represents a 4p orbital? (a) n = 4, = 0, m = 1 (b) n = 4, = 1, m = 0 (c) n = 4, = 2, m = 1 (d) n = 4, = 1, m =2arrow_forwardA bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in joules, must be released by an electron in a mercury atom to produce a photon of this light?arrow_forward6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forward
- What is the maximum number of electrons that can occupy a f subshell (l = 3)?arrow_forwardWhich of the following is a valid set of quantum numbers for an electron in a hydrogen atom? (a) n = 1, = 0, m = 0, ms = 1 (b) n = 1, = 1, m = 0, ms = 1/2 (c) n = 1, = 0, m = 1, ms = + 1/2 (d) n = 1, = 0, m = 0, ms = 1/2arrow_forwardWhat experimental evidence supports the quantum theory of light? Explain the wave-particle duality of all matter .. For what size particles must one consider both the wave and the particle properties?arrow_forward
- 6.96 When a helium atom absorbs light at 58.44 nm, an electron is promoted from the 1s orbital to a 2p orbital. Given that the ionization energy of (ground state) helium is 2372 kJ/ mol, find the longest wavelength of light that could eject an electron from the excited state helium atom.arrow_forwardGive the possible values of a. the principal quantum number, b. the angular momentum quantum number, c. the magnetic quantum number, and d. the spin quantum number.arrow_forwardImagine a world in which the rule for the l quantum number is that values start with 1 and go up to n. The rules for the n and mi quantum numbers are unchanged from those of our world. Write the quantum numbers for the first two shells (i.e., n = 1 and n = 2).arrow_forward
- Light with a wavelength of 405 nm fell on a strontium surface, and electrons were ejected. If the speed of an ejected electron is 3.36 105 m/s, what energy was expended in removing the electron from the metal? Express the answer in joules (per electron) and in kilojoules per mole (of electrons).arrow_forwardInvestigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forwardWhy is the electron in a Bohr hydrogen atom bound less tightly when it has a quantum number of 3 than when it has a quantum number of 1?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning