Concept explainers
A mixture contains the following five pure substances:
Cl2, C2Cl6, H2CO3, H2SO4, and HC1.
- a. How many different kinds of diatomic molecules are present in the mixture?
- b. How many different kinds of atoms are present in the mixture?
- c. How many total atoms are in a mixture sample containing four molecules of each component?
- d. How many total carbon atoms are present in a mixture sample containing three molecules of each component?
(a)
Interpretation:
The number of diatomic molecules that is present in the mixture has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses chemical symbols of the elements that is present in the compound and numerical subscripts that represent how many number of atoms of each element is present in the compound.
Answer to Problem 1.88EP
In the given mixture of five molecules, two diatomic molecules are present.
Explanation of Solution
Given molecules in mixture are
Diatomic molecule is the one that contains a total of two atoms in it. Looking into the above chemical formulas, the molecule that contains two atoms in it is found to be
(b)
Interpretation:
The different kind of atoms that is present in the mixture has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses chemical symbols of the elements that is present in the compound and numerical subscripts that represent how many number of atoms of each element is present in the compound.
Answer to Problem 1.88EP
Five kinds of atoms are present in the mixture.
Explanation of Solution
Given molecules in mixture are
Looking into the molecules in the given mixture, it is found that there are five kind of atoms present in the given molecules and they are
(c)
Interpretation:
The total number of atoms that is present in the mixture that contains four molecules of each component has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses chemical symbols of the elements that is present in the compound and numerical subscripts that represent how many number of atoms of each element is present in the compound.
Answer to Problem 1.88EP
There are a total of 100 atoms present.
Explanation of Solution
Given molecules in mixture are
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
The total number of atoms that is present in mixture which contains one molecule of each component can be found by summing up the number of atoms in all molecules. This gives the total number of atoms as 25.
If the mixture contains four molecules of each component, then the total number of atoms can be found as shown below,
Therefore, there are 100 atoms present in the mixture that contains four molecules of each component.
(d)
Interpretation:
The total number of carbon atoms that is present in the mixture that contains three molecules of each component has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses chemical symbols of the elements that is present in the compound and numerical subscripts that represent how many number of atoms of each element is present in the compound.
Answer to Problem 1.88EP
There are a total of 9 carbon atoms present.
Explanation of Solution
Given molecules in mixture are
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
The total number of carbon atoms that is present in mixture which contains one molecule of each component can be found by summing up the number of carbon atoms in all molecules. This gives the total number of carbon atoms as 3.
If the mixture contains three molecules of each component, then the total number of carbon atoms can be found as shown below,
Therefore, there are 9 carbon atoms present in the mixture that contains three molecules of each component.
Want to see more full solutions like this?
Chapter 1 Solutions
General, Organic, and Biological Chemistry
- Please correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forward
- Five chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward
- 13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forward
- Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning