
Concept explainers
(a)
Interpretation:
Among the given molecules, number of molecules that contain four or fewer atoms present in the mixture has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses
(a)

Answer to Problem 1.87EP
In the given mixture of five molecules, two kinds of molecules contains four or fewer atoms in it.
Explanation of Solution
Given molecules in mixture are
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
From the above number of atoms present in each and every molecule, the atoms that contains four or fewer atoms are
(b)
Interpretation:
The different kind of atoms that is present in the mixture has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses chemical symbols of the elements that is present in the compound and numerical subscripts that represent how many number of atoms of each element is present in the compound.
(b)

Answer to Problem 1.87EP
Four kinds of atoms are present in the mixture.
Explanation of Solution
Given molecules in mixture are
Looking into the molecules in the given mixture, it is found that there are four kind of atoms present in the given molecules and they are
(c)
Interpretation:
The total number of atoms that is present in the mixture that contains five molecules of each component has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses chemical symbols of the elements that is present in the compound and numerical subscripts that represent how many number of atoms of each element is present in the compound.
(c)

Answer to Problem 1.87EP
There are a total of 110 atoms present.
Explanation of Solution
Given molecules in mixture are
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
The total number of atoms that is present in mixture which contains one molecule of each component can be found by summing up the number of atoms in all molecules. This gives the total number of atoms as 22.
If the mixture contains five molecules of each component, then the total number of atoms can be found as shown below,
Therefore, there are 110 atoms present in the mixture that contains five molecules of each component.
(d)
Interpretation:
The total number of hydrogen atoms that is present in the mixture that contains four molecules of each component has to be given.
Concept Introduction:
The composition of a chemical compound can be presented in a very precise was with the use of chemical formula. Chemical formula uses chemical symbols of the elements that is present in the compound and numerical subscripts that represent how many number of atoms of each element is present in the compound.
(d)

Answer to Problem 1.87EP
There are a total of 56 hydrogen atoms present.
Explanation of Solution
Given molecules in mixture are
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
Number of atoms in
The total number of hydrogen atoms that is present in mixture which contains one molecule of each component can be found by summing up the number of hydrogen atoms in all molecules. This gives the total number of hydrogen atoms as 14.
If the mixture contains four molecules of each component, then the total number of hydrogen atoms can be found as shown below,
Therefore, there are 56 hydrogen atoms present in the mixture that contains four molecules of each component.
Want to see more full solutions like this?
Chapter 1 Solutions
General, Organic, and Biological Chemistry
- true or false, given that a 20.00 mL sample of NaOH took 24.15 mL of 0.141 M HCI to reach the endpoint in a titration, the concentration of the NaOH is 1.17 M.arrow_forwardin the bromothymol blue experiment, pKa was measured. A closely related compound has a Ka of 2.10 x 10-5. What is the pKa?a) 7.1b) 4.7c) 2.0arrow_forwardcalculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forward
- true or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forwardI2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forwardtrue or false,the equilibrium constant for this reaction is 0.50.PCI5(g) ↔ PCI3(g) + CI2(g)Based on the above, the equilibrium constant for the following reaction is 0.25.2PCI5(g) ↔. 2PCI3(g) + 2CI2(g)arrow_forward
- true or false, using the following equilibrium, if carbon dioxide is added the equilibrium will shift toward the productsC(s) + CO2(g) ↔ 2CO(g)arrow_forward2S2O2/3- (aq) + I2 (aq) ---> S4O2/6- (aq) +2I- (aq) Experiment I2 (M) S2O3- (M) Initital Rate (M/s) 1 0.01 0.01 0.0004 2 0.01 0.02 0.0004 3 0.02 0.01 0.0008 Calculate the overall order for this reaction using the table data a) 3b) 0c) 2d) 1arrow_forwardthe decomposition of N2O5 is the first order with a half-life of 1.98 minutes. If the inital concentration of N2O5 is 0.200 M, what is the concentration after 6 minutes?a) 0.612 Mb) 0.035 Mc) 0.024 Md) 0.100 Marrow_forward
- 20.00 mL of 0.150 M HCI is titrated with 0.075 M NaOH. What volume of NaOH is needed?a) 50 mLb) 20 mLc) 40 mLd) 26.66 mLarrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCI. What is the molarity of the HCI?a) 0.150 Mb) 0.079 Mc) 0.025 Md) 0.050 Marrow_forwardin the following reaction, the OH- acts as which of these?NO2- (aq) + H2O (l) ⇌ OH- (aq) + HNO2 (aq)a) not a weak acidb) basec) acidarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




