Measurements should be reported to the nearest 1000, 100, 10, 1, 0.1, 0.01, 0.001 units, etc., depending on their variability and intended use. Using your best judgment, how should the following measurements be reported?
a. Deformation of a steel specimen during the tension test (in.)
b. Tensile strength of steel (psi)
c. Modulus of elasticity of aluminum (MPa)
d. Weight of aggregate in a sieve analysis test (grams)
e. Compressive strength of portland cement concrete (psi)
f. Moisture content in a concrete masonry unit (percent)
g. Asphalt content in hot-mix asphalt (percent)
h. Specific gravity of wood
i. Distance between New York City and Los Angeles (miles)
j. Dimensions of a computer microchip (mm)
Learn your wayIncludes step-by-step video
Chapter 1 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Additional Engineering Textbook Solutions
Foundation Design: Principles and Practices (3rd Edition)
Modern Database Management (12th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
C Programming Language
Web Development and Design Foundations with HTML5 (9th Edition) (What's New in Computer Science)
Mechanics of Materials (10th Edition)
- A tensile test specimen of stainless steel alloy having a diameter of 0.495 in. and a gage length of 2.00 in. was tested to fracture. Stress and strain data obtained during the test are shown. Determine the modulus of elasticity. 120 Upper scale 90 60 Lower scale 30 0.040 0.004 0.060 0.006 0.120 0.012 0.020 0.100 0.010 0.0 0.080 0.008 0.0 0.002 Strain (in./in.) Stress (ksi)arrow_forwardA round steel alloy bar with a diameter of 0.75 in. and a gauge length of 3.0 in. was subjected to tension, with the results shown in Table Using a computer spreadsheet program, plot the stress–strain relationship. From the graph, determine the Young’s modulus of the steel alloy and the deformation corresponding to a 8,225-lb load.arrow_forwardThe (G-E) diagram obtained in the tensile test performed on a metal sample with a diameter of 16 mm is as follows. The loads at points A, B and C and the elongation measured on l. 16 cm gauge length were determined as follows: B A B C Load (kgf) 4800 8400 7200 Elongation (mm) 0.192 28.8 38.4 a) Calculate the proportionality limit, modulus of elasticity, tensile strength, maximum uniform elongation, and contraction-elongation ratio of the metal. b) Since the measured diameter of the metal at break is 12 mm, find the constriction ratio and the actual stress at break.arrow_forward
- A high-yield-strength alloy steel bar with a rectangular cross section that has a width of 37.5 mm, a thickness of 6.25 mm, and a gauge length of 203 mm was tested in tension to rupture, according to ASTM E-8 method. The load and deformation data were as shown in Table Using a spreadsheet program, obtain the following:a. A plot of the stress–strain relationship. Label the axes and show units.b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best-fit approach.c. Proportional limit.d. Yield stress.e. Ultimate strength.f. If the specimen is loaded to 155 kN only and then unloaded, what is the permanent deformation?g. In designing a typical structure made of this material, would you expect the stress applied in (f) safe? Why?arrow_forwardA round steel alloy bar with a diameter of 19 mm and a gauge length of 76 mm was subjected to tension, with the results shown in Table P3.26. Using a computer spreadsheet program, plot the stress-strain relationship. From the graph, determine the Young's modulus of the steel alloy and the deformation corresponding to a 37 kN load. TABLE P3.26 Deformation, Load, kN mm 9 0.0286 18 0.0572 27 0.0859 36 0.1145 45 0.1431 54 0.1718arrow_forward) Consider a cylindrical specimen of a steel alloy 10.0 mm in diameter and 75 mm long that is pulled in tension. (a) Determine its elongation when a load of 20,000 N is applied. (b) What is the modulus of elasticity? (c) What is the strength at a strain offset of 0.002? (d) What is the tensile strength?arrow_forward
- 1. The following data were obtained during a tension test of an aluminum alloy. The initial diameter of the test specimen was 0.505 in. and the gage length was 2.0 in. Load (lb) 0 2 310 4 640 6 950 9 290 11 600 12 600 Elongation (in.) 0.00220 0.00440 0.00660 0.00880 0.0110 0.0150 Load (lb) 14 000 14 400 14 500 14 600 14 800 14 600 13 600 Elongation (in.) 0.020 0.025 0.060 0.080 0.100 0.120 Fracture Plot the stress-strain diagram and determine the following mechanical properties: (a) proportional limit; (b) modulus of elasticity; (c) yield point; (d) yield strength at 0.2% offset; (e) ultimate strength; and (f) rupture strength.arrow_forwardAnswer the following questions based on the given information in the table and further calculation (if needed for any missing parameter, e.g. strain at yield point). Assume all metals started with the same shape and size before the tensile tests occurred. Material A B C D E Yield Strength (MPa) 105 600 430 355 The material that experienced the greatest percent reduction in area is material The hardest material is material The hardest material has Tensile Strength (MPa) The material that experienced the greatest percent reduction in area has 135 850 The material that experienced the largest change in shape before plastic deformation occurred is material The stiffest material is material The stiffest material has 535 365 Fracture before yielding The material that experienced the largest change in shape before plastic deformation occurred has Strain at Fracture [Choose ] [Choose ] [Choose ] [Choose ] [Choose ] [Choose ] [Choose ] [Choose ] 0.45 0.15 0.20 0.25 Fracture Strength (MPa)…arrow_forwardAn aluminum alloy bar with a radius of 7 mm was subjected to tension until fracture and produced results shown in Table P4.3. a. Using a spreadsheet program, plot the stress–strain relationship. b. Calculate the modulus of elasticity of the aluminum alloy. c. Determine the proportional limit. d. What is the maximum load if the stress in the bar is not to exceed the proportional limit? e. Determine the 0.2% offset yield strength. f. Determine the tensile strength. g. Determine the percent of elongation at failure.arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning