Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 1.4QP
A tensile load of 190 kN is applied to a round metal bar with a diameter of 16 mm and a gage length of 50 mm. Under this load the bar elastically deforms so that the gage length increases to 50.1349 mm and the diameter decreases to 15.99 mm. Determine the modulus of elasticity and Poisson’s ratio for this metal.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule04:58
Students have asked these similar questions
An aluminum alloy bar with a radius of 7 mm was subjected to tension until fracture and produced results shown in Table P4 a. Using a spreadsheet program, plot the stress–strain relationship. b. Calculate the modulus of elasticity of the aluminum alloy. c. Determine the proportional limit. d. What is the maximum load if the stress in the bar is not to exceed the proportional limit? e. Determine the 0.2% offset yield strength. f. Determine the tensile strength. g. Determine the percent of elongation at failure.
The stainless steel specimen is shown in Figure 3 with tensile engineering stress-strain behaviour.
a)Compute the modulus of elasticity. and Compute the yield strength at a strain offset of 0.002.
An aluminum alloy bar with a radius of 7 mm was subjected to tension until fracture and produced results shown in Table P4.3. a. Using a spreadsheet program, plot the stress–strain relationship. b. Calculate the modulus of elasticity of the aluminum alloy. c. Determine the proportional limit. d. What is the maximum load if the stress in the bar is not to exceed the proportional limit? e. Determine the 0.2% offset yield strength. f. Determine the tensile strength. g. Determine the percent of elongation at failure.
Chapter 1 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 1 - State three examples of a static load application...Ch. 1 - A material has the stressstrain behavior shown in...Ch. 1 - A tensile load of 50.000 lb is applied to a metal...Ch. 1 - A tensile load of 190 kN is applied to a round...Ch. 1 - A cylinder with a 6.0 in. diameter and 12.0 in....Ch. 1 - A metal rod with 0.5 inch diameter is subjected to...Ch. 1 - A rectangular block of aluminum 30 mm 60 mm 90...Ch. 1 - A plastic cube with a 4 in. 4 in. 4 in. is...Ch. 1 - A material has a stressstrain relationship that...Ch. 1 - On a graph, show the stressstrain relationship...
Ch. 1 - The rectangular block shown in Figure P1.11 is...Ch. 1 - The rectangular metal block shown in Figure P1.11...Ch. 1 - A cylindrical rod with a length of 380 mm and a...Ch. 1 - A cylindrical rod with a radius of 0.3 in. and a...Ch. 1 - A cylindrical rod with a diameter of 15.24 mm and...Ch. 1 - The stressstrain relationship shown in Figure...Ch. 1 - A tension test performed on a metal specimen to...Ch. 1 - An alloy has a yield strength of 41 ksi, a tensile...Ch. 1 - Prob. 1.21QPCh. 1 - Figure P1.22 shows (i) elasticperfectly plastic...Ch. 1 - An elastoplastic material with strain hardening...Ch. 1 - A brace alloy rod having a cross sectional area of...Ch. 1 - A brass alloy rod having a cross sectional area of...Ch. 1 - A copper rod with a diameter of 19 mm, modulus of...Ch. 1 - A copper rod with a diameter of 0.5 in., modulus...Ch. 1 - Define the following material behavior and provide...Ch. 1 - An asphalt concrete cylindrical specimen with a...Ch. 1 - What are the differences between modulus of...Ch. 1 - Prob. 1.33QPCh. 1 - A metal rod having a diameter of 10 mm is...Ch. 1 - What is the factor of safety? On what basis is its...Ch. 1 - Prob. 1.36QPCh. 1 - Prob. 1.37QPCh. 1 - A steel rod, which is free to move, has a length...Ch. 1 - In Problem 1.38, if the rod is snugly fitted...Ch. 1 - A 4-m-long steel plate with a rectangular cross...Ch. 1 - Estimate the tensile strength required to prevent...Ch. 1 - Prob. 1.42QPCh. 1 - Briefly discuss the variability of construction...Ch. 1 - In order to evaluate the properties of a material,...Ch. 1 - A contractor claims that the mean compressive...Ch. 1 - A contractor claims that the mean compressive...Ch. 1 - Prob. 1.47QPCh. 1 - Prob. 1.48QPCh. 1 - Prob. 1.49QPCh. 1 - Briefly discuss the concept behind each of the...Ch. 1 - Referring to the dial gauge shown in Figure P1.51,...Ch. 1 - Repeat Problem 1.51 using the dial gauge shown in...Ch. 1 - Measurements should be reported to the nearest...Ch. 1 - During calibration of an LVDT, the data shown in...Ch. 1 - During calibration of an LVDT, the data shown in...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Consider a soil that is being placed as a fill and compacted using a sheepsfoot roller (a piece of construction...
Foundation Design: Principles and Practices (3rd Edition)
For each of the following activities, give a PEAS description of the task environment and characterize it in te...
Artificial Intelligence: A Modern Approach
The ________ object is assumed to exist and it is not necessary to include it as an object when referring to it...
Web Development and Design Foundations with HTML5 (8th Edition)
3.12 (Date Create a class called Date that includes three pieces Of information as data
members—a month (type ...
C++ How to Program (10th Edition)
What Ada construct provides support for abstract data types?
Concepts of Programming Languages (11th Edition)
Figure 4-3212 shows a class list for Millennium College. Convert this user view to a set of 3NF relations using...
Modern Database Management (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The data in Table 1.5.3 were obtained from a tensile test of a metal specimen with a rectangular cross section of 0.2011in.2 in area and a gage length (the length over which the elongation is measured) of 2.000 inches. The specimen was not loaded to failure. a. Generate a table of stress and strain values. b. Plot these values and draw a best-fit line to obtain a stress-strain curve. c. Determine the modulus of elasticity from the slope of the linear portion of the curve. d. Estimate the value of the proportional limit. e. Use the 0.2 offset method to determine the yield stress.arrow_forwardA tensile test was performed on a metal specimen having a circular cross section with a diameter of 1 2 inch. The gage length (the length over which the elongation is measured) is 2 inches. For a load 13.5 kips, the elongation was 4.6610 3 inches. If the load is assumed to be within the linear elastic rang: of the material, determine the modulus of elasticity.arrow_forward3. The distribution of stress in an aluminum machine component is given (in megapascals) by Ox = y + z? Oy = x + z Oz = 3x + y Txy = 3z2 Tyz = x Txz = %3D Calculate the state of strain at a point positioned at (1,2,4). Use E=70 GPa and v = 0.3arrow_forward
- The following figure shows the tensile stress-strain curve for a plain-carbon steel. 600 80 500 MPa 600 10 psi 60 80 400 400 60- 300 40 40 200 200 20 20 100 0.005 0.05 0.10 0.15 Strain (a) What is this alloy's tensile strength? MPа (b) What is its modulus of elasticity? GPa (c) What is the yield strength? i MPa Stress (MPa) Stress (10 psi)arrow_forwardThe shown figure represents the stress-strain relations of metals A and B during tension tests until fracture.Determine the following for the two metals (show all calculations and units):a. Proportional limitb. Yield stress at an offset strain of 0.002 in./in.c. Ultimate strengthd. Modulus of resiliencee. Toughnessf. Which metal is more ductile? Why?arrow_forwardThe stress-strain diagram for a steel alloy having an original diameter of 0.5 in. and a gage length of 2 in. is given in the figure. If the specimen is loaded until it is stressed to 70 ksi, determine the approximate amount of elastic recovery and the increase in the gage length after it is unloaded. o (ksi) 80 70 60 50 40 30 20 10 e (in./in.) 0 04 0.08 0.12 0.16 0.20 0.24 0.28 0 0005 0.0010.0015 0.002 0.0025 0.0030.0035arrow_forward
- Solid mechanicsarrow_forwardA 19-mm reinforcing steel bar and a gauge length of 75 mm was subjected to ten- sion, with the results shown in Table P3.27. Using a computer spreadsheet pro- gram, plot the stress-strain relationship. From the graph, determine the Young's modulus of the steel and the deformation corresponding to a 150-kN load. TABLE P3.27 Load, kN Deformation, mm 54 0.084 163 0.168 284 0.336 330 1.428 366 3.360arrow_forward1. The following data were obtained during a tension test of an aluminum alloy. The initial diameter of the test specimen was 0.505 in., and the gage length was 2.0 in. Load ( Ib) Elongation (in.) Load ( Ib) Elongation (in.) 14000 0.020 2310 0.0022 14400 0.025 4640 0.0044 14 500 0.060 6950 0.0066 14600 0.080 9290 0.0088 14800 0.100 I1 600 0.0110 14600 0.120 13000 0.01 50 13600 Fracture Plot the stress-strain diagram and determine the following mechanical properties: a. proportional limit þ. modulus of elasticity S. vield stress at 0.2% offset d. ultimate stress e. nominal rupture stress.arrow_forward
- Problem 6arrow_forwardA force of 100,000 N is applied to an iron bar with a cross-sectional area of 10 mm × 20mm and having a yield strength of 400 MPa and a tensile strength of 480 MPa,Determinea. whether the bar will plastically deform; andb. whether the bar will experience neckingarrow_forwardA tensile load of 150kN is applied to a round metal bar with a diameter of 16mm and a gage length of 80mm. Under this load, the bar elastically deforms so that the gage length increases to 80.1192mm and the diameter decreases to 15.89mm. a.) Modulus of elasticity (MPa)b.) Poisson's ratio for this metalarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
How Cast Iron Pans Are Made — How to Make It; Author: Eater;https://www.youtube.com/watch?v=aIBt0uFwjY8;License: Standard Youtube License