The purified OXA-M290 enzyme can now be tested to determine which β-lactamase inhibitor is most effective. This inhibitor could be prescribed in combination with a β-lactam antibiotic to treat the infection caused by the E. coli KGH1 strain. Before testing inhibitors against OXA-M290, the kinetic activity of this enzyme must first be measured. The activity of OXA-M290 is measured using nitrocefin, a chromogenic β-lactam antibiotic. When nitrocefin is hydrolyzed by a β-lactamase, it changes from yellow to red in colour. The nitrocefin hydrolysis product has an extinction coefficient of 20,500 M-1 cm-1 at 486 nm. The hydrolysis of 60 μM nitrocefin by 1 nM OXA-M290 is monitored using a microplate reader. The absorbance of the wells in the plate is measured at 486 nm every 30 seconds. This experiment is carried out with three replicates, generating the following data: Time (min) Absorbance of Replicate 1 Absorbance of Replicate 2 Absorbance of Replicate 3 0.5 0.0984 0.1368 0.1344 1.0 0.2544 0.2256 0.2448 1.5 0.3432 0.3744 0.3648 2.0 0.504 0.4476 0.4944 2.5 0.6732 0.6504 0.4956 3.0 0.732 0.7032 0.7344 3.5 0.8052 0.7968 0.8412 4.0 0.9144 0.9264 0.8928 4.5 0.9636 1.0104 0.9888 5.0 1.08 0.9852 1.0152 5.5 1.0944 1.0632 1.0848 6.0 1.1064 1.1208 1.0944 6.5 1.1352 1.104 1.1472 7.0 1.1472 1.1328 1.1424 7.5 1.1676 1.1436 1.1568 8.0 1.1712 1.1568 1.1616 8.5 1.1772 1.17 1.1892 9.0 1.2024 1.176 1.1904 9.5 1.2072 1.2168 1.1808 10.0 1.2024 1.2048 1.2024 Average absorbance of the three replicates for each of the 20 time points: Time 0.5 min: (0.0984 + 0.1368 + 0.1344) / 3 ≈ 0.1232 Time 1.0 min: (0.2544 + 0.2256 + 0.2448) / 3 ≈ 0.2416 Time 1.5 min: (0.3432 + 0.3744 + 0.3648) / 3 ≈ 0.3608 Time 2.0 min: (0.504 + 0.4476 + 0.4944) / 3 ≈ 0.482 Time 2.5 min: (0.6732 + 0.6504 + 0.4956) / 3 ≈ 0.6064 Time 3.0 min: (0.732 + 0.7032 + 0.7344) / 3 ≈ 0.7239 Time 3.5 min: (0.8052 + 0.7968 + 0.8412) / 3 ≈ 0.8144 Time 4.0 min: (0.9144 + 0.9264 + 0.8928) / 3 ≈ 0.9112 Time 4.5 min: (0.9636 + 1.0104 + 0.9888) / 3 ≈ 0.9876 Time 5.0 min: (1.08 + 0.9852 + 1.0152) / 3 ≈ 1.0261 Time 5.5 min: (1.0944 + 1.0632 + 1.0848) / 3 ≈ 1.0808 Time 6.0 min: (1.1064 + 1.1208 + 1.0944) / 3 ≈ 1.1072 Time 6.5 min: (1.1352 + 1.104 + 1.1472) / 3 ≈ 1.1288 Time 7.0 min: (1.1472 + 1.1328 + 1.1424) / 3 ≈ 1.1408 Time 7.5 min: (1.1676 + 1.1436 + 1.1568) / 3 ≈ 1.156 Time 8.0 min: (1.1712 + 1.1568 + 1.1616) / 3 ≈ 1.1632 Time 8.5 min: (1.1772 + 1.17 + 1.1892) / 3 ≈ 1.1785 Time 9.0 min: (1.2024 + 1.176 + 1.1904) / 3 ≈ 1.1896 Time 9.5 min: (1.2072 + 1.2168 + 1.1808) / 3 ≈ 1.2016 Time 10.0 min: (1.2024 + 1.2048 + 1.2024) / 3 ≈ 1.2032 Using Beer's law and the average absorbance values calculated in the previous question, what is the concentration of hydrolyzed nitrocefin at each of the 20 time points? Assume that the path length is 1 cm, and use the extinction coefficient provided in Question 1. Although you can do each calculation manually, it's far easier to use Microsoft Excel to fill in the formula used for this calculation. Show a sample calculation for the first time point, and make sure to include units in your calculation and your answers. Provide your answers in μM (micromolar) units.

Biochemistry
9th Edition
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Chapter1: Biochemistry: An Evolving Science
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
100%

The purified OXA-M290 enzyme can now be tested to determine which β-lactamase inhibitor is most effective. This inhibitor could be prescribed in combination with a β-lactam antibiotic to treat the infection caused by the E. coli KGH1 strain.

Before testing inhibitors against OXA-M290, the kinetic activity of this enzyme must first be measured.

The activity of OXA-M290 is measured using nitrocefin, a chromogenic β-lactam antibiotic. When nitrocefin is hydrolyzed by a β-lactamase, it changes from yellow to red in colour. The nitrocefin hydrolysis product has an extinction coefficient of 20,500 M-1 cm-1 at 486 nm.

The hydrolysis of 60 μM nitrocefin by 1 nM OXA-M290 is monitored using a microplate reader. The absorbance of the wells in the plate is measured at 486 nm every 30 seconds. This experiment is carried out with three replicates, generating the following data:

Time (min)

Absorbance of Replicate 1

Absorbance of Replicate 2

Absorbance of Replicate 3

0.5

0.0984

0.1368

0.1344

1.0

0.2544

0.2256

0.2448

1.5

0.3432

0.3744

0.3648

2.0

0.504

0.4476

0.4944

2.5

0.6732

0.6504

0.4956

3.0

0.732

0.7032

0.7344

3.5

0.8052

0.7968

0.8412

4.0

0.9144

0.9264

0.8928

4.5

0.9636

1.0104

0.9888

5.0

1.08

0.9852

1.0152

5.5

1.0944

1.0632

1.0848

6.0

1.1064

1.1208

1.0944

6.5

1.1352

1.104

1.1472

7.0

1.1472

1.1328

1.1424

7.5

1.1676

1.1436

1.1568

8.0

1.1712

1.1568

1.1616

8.5

1.1772

1.17

1.1892

9.0

1.2024

1.176

1.1904

9.5

1.2072

1.2168

1.1808

10.0

1.2024

1.2048

1.2024

Average absorbance of the three replicates for each of the 20 time points:

  • Time 0.5 min: (0.0984 + 0.1368 + 0.1344) / 3 ≈ 0.1232
  • Time 1.0 min: (0.2544 + 0.2256 + 0.2448) / 3 ≈ 0.2416
  • Time 1.5 min: (0.3432 + 0.3744 + 0.3648) / 3 ≈ 0.3608
  • Time 2.0 min: (0.504 + 0.4476 + 0.4944) / 3 ≈ 0.482
  • Time 2.5 min: (0.6732 + 0.6504 + 0.4956) / 3 ≈ 0.6064
  • Time 3.0 min: (0.732 + 0.7032 + 0.7344) / 3 ≈ 0.7239
  • Time 3.5 min: (0.8052 + 0.7968 + 0.8412) / 3 ≈ 0.8144
  • Time 4.0 min: (0.9144 + 0.9264 + 0.8928) / 3 ≈ 0.9112
  • Time 4.5 min: (0.9636 + 1.0104 + 0.9888) / 3 ≈ 0.9876
  • Time 5.0 min: (1.08 + 0.9852 + 1.0152) / 3 ≈ 1.0261
  • Time 5.5 min: (1.0944 + 1.0632 + 1.0848) / 3 ≈ 1.0808
  • Time 6.0 min: (1.1064 + 1.1208 + 1.0944) / 3 ≈ 1.1072
  • Time 6.5 min: (1.1352 + 1.104 + 1.1472) / 3 ≈ 1.1288
  • Time 7.0 min: (1.1472 + 1.1328 + 1.1424) / 3 ≈ 1.1408
  • Time 7.5 min: (1.1676 + 1.1436 + 1.1568) / 3 ≈ 1.156
  • Time 8.0 min: (1.1712 + 1.1568 + 1.1616) / 3 ≈ 1.1632
  • Time 8.5 min: (1.1772 + 1.17 + 1.1892) / 3 ≈ 1.1785
  • Time 9.0 min: (1.2024 + 1.176 + 1.1904) / 3 ≈ 1.1896
  • Time 9.5 min: (1.2072 + 1.2168 + 1.1808) / 3 ≈ 1.2016
  • Time 10.0 min: (1.2024 + 1.2048 + 1.2024) / 3 ≈ 1.2032

Using Beer's law and the average absorbance values calculated in the previous question, what is the concentration of hydrolyzed nitrocefin at each of the 20 time points? Assume that the path length is 1 cm, and use the extinction coefficient provided in Question 1.

Although you can do each calculation manually, it's far easier to use Microsoft Excel to fill in the formula used for this calculation.

Show a sample calculation for the first time point, and make sure to include units in your calculation and your answers. Provide your answers in μM (micromolar) units.

Expert Solution
steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Knowledge Booster
Molecular techniques
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman
Lehninger Principles of Biochemistry
Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul…
Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781305961135
Author:
Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:
Cengage Learning
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning
Fundamentals of General, Organic, and Biological …
Fundamentals of General, Organic, and Biological …
Biochemistry
ISBN:
9780134015187
Author:
John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:
PEARSON