Rat heart muscle operating aerobically fills more than 90% of its ATP needs by oxidative phosphorylation. If each gram of tissue consumes O2 at the rate of 12.0 micromol/min, with glucose as the fuel source. (a) Calculate the rate at which the heart muscle consumes glucose and produces ATP. (b) Consider an alternate scenario – what would be the rate of consumption if the energy source was a solely triglycerides whose fatty acyl chains were each 14-C in length and saturated? (Assume the O2 consumption rate remains at 12.0 micromol/min) (c) For a steady-state concentration of ATP of 6.0 micromol/g of heart muscle tissue, calculate the time required (in seconds) to completely turn over the cellular pool of ATP if glucose us used as the sole fuel source. What does this result indicate about the need for tight regulation of ATP production? (Note: Concentrations are expressed as micromoles per gram of muscle tissue because the tissue is mostly water.)
- Rat heart muscle operating aerobically fills more than 90% of its ATP needs by oxidative phosphorylation. If each gram of tissue consumes O2 at the rate of 12.0 micromol/min, with glucose as the fuel source.
(a) Calculate the rate at which the heart muscle consumes glucose and produces ATP.
(b) Consider an alternate scenario – what would be the rate of consumption if the energy source was a solely triglycerides whose fatty acyl chains were each 14-C in length and saturated? (Assume the O2 consumption rate remains at 12.0 micromol/min)
(c) For a steady-state concentration of ATP of 6.0 micromol/g of heart muscle tissue, calculate the time required (in seconds) to completely turn over the cellular pool of ATP if glucose us used as the sole fuel source. What does this result indicate about the need for tight regulation of ATP production? (Note: Concentrations are expressed as micromoles per gram of muscle tissue because the tissue is mostly water.)
Trending now
This is a popular solution!
Step by step
Solved in 5 steps