(9) Figure Q9 shows a 2 m long symmetric I beam where the upper and lower sections are 2X wide and the middle section is X wide, where X is 49 mm. The I beam sections are all Y=48 mm in depth. The beam is loaded in the middle with a load of Z=59 kN causing reaction forces at either end of the beam's supports. What is the maximum (positive) bending stress experienced in the beam in terms of mega-Pascals? State your answer to the nearest whole number. Z KN Y mm Y mm Y mm X mm 2X mm Figure Q9 2 m

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter5: Stresses In Beams (basic Topics)
Section: Chapter Questions
Problem 5.5.9P: A seesaw weighing 3 lb/ft of length is occupied by two children, each weighing 90 lb (see figure)....
icon
Related questions
Question
(9) Figure Q9 shows a 2 m long symmetric I beam where the upper and lower sections are 2X wide and the middle section is X wide, where X is 49 mm. The I beam sections are all Y=48 mm in depth. The beam is loaded in the middle with a
load of Z=59 kN causing reaction forces at either end of the beam's supports.
What is the maximum (positive) bending stress experienced in the beam in terms of mega-Pascals?
State your answer to the nearest whole number.
Z KN
Y mm
Y mm
Y mm
X mm
2X mm
Figure Q9
2 m
Transcribed Image Text:(9) Figure Q9 shows a 2 m long symmetric I beam where the upper and lower sections are 2X wide and the middle section is X wide, where X is 49 mm. The I beam sections are all Y=48 mm in depth. The beam is loaded in the middle with a load of Z=59 kN causing reaction forces at either end of the beam's supports. What is the maximum (positive) bending stress experienced in the beam in terms of mega-Pascals? State your answer to the nearest whole number. Z KN Y mm Y mm Y mm X mm 2X mm Figure Q9 2 m
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning