M3.4 Laboratory 6 Worksheet answee

docx

School

Broward College *

*We aren’t endorsed by this school

Course

2053L

Subject

Mechanical Engineering

Date

Apr 3, 2024

Type

docx

Pages

8

Uploaded by MinisterSnow24467

Report
Name: __________________________________________ M3.4 Laboratory Report 6 Worksheet PhET Simulation: Collisions Instructions You should download this page and complete all your work directly on the MS Word worksheet using MSWord, following the M3.4 Laboratory Report 6 Instructions. Submit your completed Word document to the M3.4 Laboratory Report 6 dropbox. See the Schedule and Course Rubrics in the Syllabus Module for due dates and grading information. To be familiar with simulation setting and controllers used to set the velocity, momentum, mass, kinetic energy using PhET simulation open the following link, choose Explore 1D and play with it. https://phet.colorado.edu/sims/html/collision-lab/latest/collision-lab_all.html Objectives 1- Study collision in one dimension and collision in two dimensions. 2- Calculate the momentum and kinetic energy conservation in elastic and inelastic collisions. Theory The following experiment explores the conservation of momentum and energy in a closed physical system. In this lab, we will see in practice how the conservation of momentum and total energy relate various parameters (masses, velocities) of the system independently of the nature of the interaction between the colliding bodies.
Part I: One Dimensional Collisions Part 1.1: Elastic collision 1- Use the mass controller to control the mass of the balls (m 1 and m 2 ). 2- Control the balls velocity by changing the length and the direction of the velocity vector. (press on the circle at the tip of the velocity vector and then drag to change its magnitude and direction). 3- For elastic collision use the elasticity controller (drag the Elasticity Slider) to choose the collision type (elastic for this part). 4- Once you fix your variables, select More Data to record your data before collision and then press play. After the two balls collide, pause the simulation to record your data after collision. 5- Fill tables 1(a), Table 1(b) and Table 1(c). Table 1(a) Same mass m 1 =m 2 =2.68 kg; m 1 – moving to the right, m 2 – stationary V 1i (m/s) V 2i (m/s) V 1f (m/s) V 2f (m/s) P 1i (kgm/s) P 2i (kg.m/s) P 1f (kg.m/s) P 2f (kg.m/s) 1.00 0.50 0.50 1.00 2.68 1.34 1.34 2.68 1.00 0.50 0.42 0.88 2.60 1.34 1.30 2.59 Table 1(b) Different mass m 1 = 1.73 kg and m 2 =2.28 kg; m 1 – moving to the right, m 2 stationary P i (kg.m/s) P f (kg.m/s) K i (J) K i1 + K i2 K f (J) K f1 + K f2 4.02 4.02 1.68 1.68 3.95 4.18 1.60 1.94
V 1i (m/s) V 2i (m/s) V 1f (m/s) V 2f (m/s) P 1i (kgm/s) P 2i (kg.m/s) P 1f (kg.m/s) P 2f (kg.m/s) 1.00 0.50 0.71 1.79 1.73 1.14 1.22 1.81 1.02 0.50 0.68 1.75 1.65 1.24 1.20 1.84 Table 1(c) Different mass m 1 = 1.46 kg and m 2 =2.77 kg; head on collision V 1i (m/s) V 2i (m/s) V 1f (m/s) V 2f (m/s) P 1i (kgm/s) P 2i (kg.m/s) P 1f (kg.m/s) P 2f (kg.m/s) 1.00 0.50 0.96 0.54 1.46 1.69 1.41 1.48 1.00 0.50 0.92 0.51 1.52 1.38 1.34 1.41 Write down the ratios K f /K and P /P i for the three tables 1(a), 1(b) and 1(c). Pf/pi =4.02/4.02=1:1 Pf/pi 3.03:2.87= 3.03/2.87 Pf/pi =2.89/2.89=1:1 P i (kg.m/s) P f (kg.m/s) K i (J) K i1 + K i2 K f (J) K f1 + K f2 2.87 3.03 1.15 1.15 2.81 3.05 1.20 1.18 P i (kg.m/s) P f (kg.m/s) K i (J) K i1 + K i2 K f (J) K f1 + K f2 2.85 2.89 1.08 1.08 2.92 2.85 1.03 1.05
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
…………………………………………………………………… Part 1.2: Inelastic collision 1- Use the mass controller to control the mass of the balls (m 1 and m 2 ). 2- Control the balls velocity by changing the length and the direction of the velocity vector. (press on the circle at the tip of the velocity vector, and then drag to change its magnitude and direction). 3- For inelastic collision use the elasticity controller (drag the blue triangle to the left) to choose the collision type (inelastic for this part). 4- Once you fix your variables, select More Data to record your data before collision and then press play. After the two balls collide, pause the simulation to record your data after collision. 5- Fill tables 2(a), Table 2(b). Table 2(a) m 1 =2.12 kg and m 2 =2.87 kg; m 1 – moving to the right, m 2 – stationary V 1i (m/s) V 2i (m/s) V 1f (m/s) V 2f (m/s) P 1i (kgm/s) P 2i (kg.m/s) P 1f (kg.m/s) P 2f (kg.m/s) 1.00 0.00 0.47 0.41 2.12 0.00 1.01 1.19 1.00 0.00 0.41 0.43 2.12 0.00 1.05 1.24 Table 2(b) m 1 = 2.12 kg, m 2 =2.87 kg; head on collision P i (kg.m/s) P f (kg.m/s) K i (J) K i1 + K i2 K f (J) K f1 + K f2 3.13 1.19 1.06 0.48 3.18 1.15 1.03 0.52
V 1i (m/s) V 2i (m/s) V 1f (m/s) V 2f (m/s) P 1i (kgm/s) P 2i (kg.m/s) P 1f (kg.m/s) P 2f (kg.m/s) 0.50 0.50 0.08 0.08 1.06 1.44 0.16 0.22 0.50 0.50 0.11 0.13 1.06 1.39 0.22 0.18 Write down the ratios K f /K and P /P i for the two tables 2(a) and 2(b) Table 2(a) Table 2(b) Kf/ki=0.48/1.06=24:53 Kf/ki=0.01/0.62=1:62 Pf/pi=1.19/3.13=119:313 Pf/pi=0.38/2.50=19:125 Part II: Two Dimensional Collisions P i (kg.m/s) P f (kg.m/s) K i (J) K i1 + K i2 K f (J) K f1 + K f2 2.5 0.38 0.62 0.01 2.6 0.25 0.64 0.05
1. Open the link and select Explore 2D, use the mass controller to control the mass of the balls (m 1 and m 2 ).  2. Control the balls velocity by changing the length and the direction of the velocity vector (press on the circle at the tip of the velocity vector, and then drag to change its magnitude and direction). Choose your own value for the velocities and keep the same values for both Elastic and Inelastic collisions 3. For elastic collision use the elasticity controller to choose the collision type (elastic for this part).   4. Once you fix your variables, select More Data to record your data before collision and then press play. After the two balls collide, pause the simulation to record your data after collision, press on Show values to get your data.       Fill table 3(a). 5.   Repeat all the above for inelastic collision and record your data in Table 3 (b) For both parts in two dimensions use masses m 1 =2.12 kg and m 2 =2.87 kg; choose your angle and position of each ball and keep the initial set up the same.                   Table 3(a) Elastic             m 1 =2.12 kg and m 2 =2.87 kg   V 1xi (m/ s) V 2xi (m/ s) V 1xf (m/ s) V 2xf (m/ s) P 1xi (kg.m/ s) P 2xi (kg.m/s) P 1xf (kg.m/s) P 2xf (kg.m/s) P xi (kg.m/ s) P xf (kg.m/s) 1.4 0.9 0.96 0.77 2.21 1.98 2.04 2.22 0.25 0.25 1.08 0.72 0.94 0.65 2.26 1.84 2.10 2.18 0.21 0.30                                         V 1yi (m/ s) V 2yi (m/ s) V 1yf (m/ s) V 2yf (m/s) P 1yi (kg.m/s) P 2yi (kg.m/s) P 1yf (kg.m/s) P 2yf (kg.m/ s) P yi (kg.m/s) P yf (kg.m/s) 0.89 0.70 0.97 0.62 1.90 2.00 2.05 1.78 -0.01 -0.01 0.75 0.75 0.91 0.69 1.82 2.06 2.08 1.69 0.03 0.02
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
P i (kg.m/s) K i (J) P f (kg.m/s) K f (J) 4.25 1.84 4.20 1.84 3.85 1.55 3.78 1.55                                                                                                                                                                                                                                                   Table 3(b) Inelastic         m 1 =2.12 kg and m 2 =2.87 kg             V 1xi (m/ s) V 2xi (m/ s) V 1xf (m/ s) V 2xf (m/ s) P 1xi (kg.m/ s) P 2xi (kg.m/s) P 1xf (kg.m/s) P 2xf (kg.m/s) P xi (kg.m/ s) P xf (kg.m/s) 0.53 0.57 0.43 0.31 1.13 1.63 0.91 0.89 -0.37 -0.37 0.49 0.49 0.48 0.35 1.09 1.69 0.95 0.80 -0.25 -0.32                                         V 1yi (m/ s) V 2yi (m/ s) V 1yf (m/ s) V 2yf (m/s) P 1yi (kg.m/s) P 2yi (kg.m/s) P 1yf (kg.m/s) P 2yf (kg.m/ s) P yi (kg.m/s) P yf (kg.m/s) 0.52 0.57 0.15 0.2 1.10 1.63 0.31 0.66 -0.41 -0.41 0.53 0.51 0.22 1.14 1.09 1.59 0.25 0.60 -0.39 -0.38 P i (kg.m/s) K i (J) P f (kg.m/s) K f (J) 2.04 0.76 2.52 0.10 1.41 0.75 2.29 0.10                            
      Write down the ratios K /K i and P /P i for the two tables 3(a) and 3(b). Because the mass of the moving balls has changed, the kinetic energy of an inelastic collision also changes.   Include your observations and conclusions about the Conservation of Linear Momentum and the Conservation of Kinetic Energy in the different types of collisions in the completed laboratory report.