Instructions for Assignment 1
docx
keyboard_arrow_up
School
Concordia University *
*We aren’t endorsed by this school
Course
6941
Subject
Mechanical Engineering
Date
Feb 20, 2024
Type
docx
Pages
3
Uploaded by LieutenantMask1101
Instructions for Assignment 1 : MECH 6541 X and XX winter session
The students are required to find their way to the bridge on their own. Take the metro to the Montmorency station in Laval and then take the bus line number 8 in the direction of St Eustache
Assignment 1 : Bridge Project. The student is required to visit a bridge on Chemin des ils Corbeil in Sainte Eustache, Quebec and report on how the Bridge was manufactured and erected. You can find the bridge by typing in Google Maps : Île Corbeil, Saint-Eustache, QC
Please include the following in your assignment 1 report – printed copy with your colour picture
Read the case history – both reports
Unfortunately, the company ABC Inc was removed from the supply of the bridge. The insurance company scrapped the bridge work at ABC Inc and went ahead and ordered a bridge from another leading Construction company in Quebec City. The Insurance company further seized all
the assets of ABC Inc sold them to the lowest bidder and sued the owner of ABC inc for 3 Million
dollars of losses. This unfortunate turn of events occurred in September 2015, where ABC Inc was closed for ever and almost 80 jobs were lost in the region.
The student is required to visit the newly erected bridge, and observe the difficult access to the site for long and heavy original bridge components and understand the new bridge design.
1.
Take a selfie at the beginning of the bridge in the location shown below
2.
Look for the name of the constructor of the bridge elements and find out from the web how the bridge must have been erected. The web site has good information. Describe this process in your report. You may even find a drawing on the web, include it in your report.
3.
How is the bridge surface protected from the environment? 4.
Comment on the life expectancy of the bridge structure. (time in years) 5.
Observe the bridge elements and take close ups of some accessible welds, 2 – 3 welds and indicate what welding processes were used in the manufacture of the bridge.
6.
There are square and round structural tubing used to manufacture the bridge. What welding process is used to make such structural rectangular or round tubing?
7.
In the mid span of the bridge, the top reinforcing bars do not mate. Include a picture of this in your report and comment if this is a serious issue. A fire truck must pass on the bridge if needed. Provide your engineering assessment of any preventive measures if any?
8.
What went wrong in this project: was the city of St Eustache at fault by awarding the contract to the lowest bidder*, was the company ABS Inc at fault, were the actions of the Insurance bond company ethical? 9.
The professional report should not be more than 10 -15 pages. 10.
Student is advised to read also the welding audit rational expressed in the AWS publication and comment in your report. 11.
Look up on Chat GPT. Comment on how ISO 3834 can be used for global procurement. Max six lines!
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
Group Problem: You are planning to build a log cabin in Northern Minnesota on a remote hill with a beautiful
view of the setting sun. You will drag the logs up a long sometimes rocky hill to the building site by means of a
rope attached to a winch. You will need a rope for this job so you aim to know how much weight the rope would
safely support. You are operating on a tight budget so matching the rope strength would be a cost saver. You
know that the logs are heavy, and estimate the heaviest as 1,000 lbs. From maps you verify the hill is steeped
at an angle of = 70° with respect to the vertical, and you estimate a coefficient of kinetic friction between a
log and the earthen hill as 0.5. When pulling a log you will ensure that the uphill acceleration is never more
than 3.0 ft/s². The maximum recommended load is th of the nominal strength for the ropes considered as
stated on the product labels, you have three ropes in mind: 12 kN, 18 kN, & 24 kN. Which one of these three
rope…
arrow_forward
Please do Asap
arrow_forward
Need help with this
arrow_forward
Learning Goal:
To be able to find the center of gravity, the center of mass, and the
centroid of a composite body.
A centroid is an object's geometric center. For an object of uniform
composition, its centroid is also its center of mass. Often the
centroid of a complex composite body is found by, first, cutting the
body into regular shaped segments, and then by calculating the
weighted average of the segments' centroids. An object is made
from a uniform piece of sheet metal. The object has dimensions of
a = 1.25 ft, where a is the diameter of the semi-circle, b = 3.71 ft,
and c = 2.30 ft. A hole with diameter d = 0.750 ft is centered at
(1.09, 0.625).
Figure
kd-
J = 0.737
Find y, the y-coordinate of the body's centroid. (Figure 1)
Express your answer numerically in feet to three significant figures.
View Available Hint(s)
ΑΣΦ
Submit Previous Answers
vec
3
X Incorrect; Try Again; 2 attempts remaining
?
ft
arrow_forward
Help!!! Answer all parts correctly!! Please
arrow_forward
Help with this would be great, thanks!
arrow_forward
Help with this would be great, thanks!
arrow_forward
Learning Task 2:
Changes in momentum happen every time. A fast-moving car when suddenly stopped might have damaging effects not
only to the vehicle itself but also to the person riding it. Various devices have been installed in vehicles to ensure the safety of
the passengers. Can you think of some safety devices installed on vehicles (public/private)? Name at least five (5) of them.
arrow_forward
Help!!! Please answer all Correctly!!! Please
arrow_forward
Do not give answer in image and hand writing
arrow_forward
Learning Goal:
A column with a wide-flange section has a flange width b = 200 mm , height h = 200 mm, web thickness tw = 8 mm , and flange
thickness tf = 12 mm (Figure 1). Calculate the stresses at a point 75 mm above the neutral axis if the section supports a tensile
To calculate the normal and shear stresses at a point
on the cross section of a column.
normal force N = 2.9 kN at the centroid, shear force V = 4.6 kN, and bending moment M = 4.8 kN • m as shown (Figure 2).
The state of stress at a point is a description of the
normal and shear stresses at that point. The normal
stresses are generally due to both internal normal
force and internal bending moment. The net result can
be obtained using the principle of superposition as
long as the deflections remain small and the response
is elastic.
Part A - Normal stress
Calculate the normal stress at the point due to the internal normal force on the section.
Express your answer with appropriate units to three significant figures.
> View…
arrow_forward
This is an engineering problem and not a writing assignment. Please Do Not Reject. I had other engineering tutors on bartleby help me with problems similar to this one.
This problem must be presented in a logical order showing the necessary steps used to arrive at an answer. Each homework problem should have the following items unless otherwise stated in the problem:
a. Known: State briefly what is known about the problem.
b. Schematic: Draw a schematic of the physical system or control volume.
c. Assumptions: List all necessary assumptions used to complete the problem.
d. Properties: Identify the source of property values not given to you in the problem. Most sources will be from a table in the textbook (i.e. Table A-4).
e. Find: State what must be found.
f. Analysis: Start your analysis with any necessary equations. Develop your analysis as completely as possible before inserting values and performing the calculations. Draw a box around your answers and include units and follow an…
arrow_forward
Part A
Learning Goal:
To apply the principle of moments and the principle of
transmissibility.
What is Mp,, the contribution to the moment about point O made by the x component of the force F at point A?
What is MF., the contribution to the moment about point O made by the y component of the force F at point A?
What is the total moment M due to the force F about point O? Assume that moments acting counterclockwise
about point O are positive whereas moments acting clockwise are negative.
As shown, a rope is attached to a l= 19.0ft high shed
that is to be relocated. A man pulls on the end of the
rope at point A; the rope is attached to the shed at point
B. (Figure 1) As the man pulls on the rope, it creates an
angle 0 with the horizontal. The end of the rope is
located at x = 15.0ft from the shed and y = 5.00ft off
the ground. The man pulls on the rope with a force of
magnitude F = 70.0lb
Express your answers numerically in pound-feet to three significant figures separated by commas.
>…
arrow_forward
Learning Goal:
To describe the shape and behavior of cables that are subjected to concentrated and
distributed loads.
Part A
Structures often use flexible cables to support members and to transmit loads between
structural members. Because a cable's weight is often significantly smaller than the
load it supports, a cable's weight is considered negligible and, therefore, not used in
the analysis.
In this tutorial, cables are assumed to be perfectly flexible and inextensible. Thus, once
the load is applied the geometry of the cable remains fixed and the cable segment can
be treated as a rigid body.
Cables of negligible weight support the loading shown. (Figure 1) If W, = 85.0 N , W, = 510 N, YB = 1.40 m, yc = 2.80 m, yp = 0.700 m, and zc = 0.850 m, find zg.
Express your answer numerically in meters to three significant figures.
> View Available Hint(s)
VO AEoI vec
IB = 2.048
m
Submit
Previous Answers
X Incorrect; Try Again; 4 attempts remaining
Part B Complete previous part(s)
W2
O…
arrow_forward
Help!!! Please answer all Correctly!!! Please
arrow_forward
TOPIC: ENGINEERING ECONOMICS
SPECIFIC INSTRUCTION: Solve each problem NEATLY and SYSTEMATICALLY. Show your
COMPLETE solutions and BOX your final answers. Express all your answers in 2 decimal places.
PROBLEM:
Cardinal Financing lent an engineering company Php 500,000 to retrofit an environmentally
unfriendly building. The loan is for 5 years at 10 % per year simple interest. How much money
will the firm repay at the end of 5 years?
arrow_forward
Create a reading outline for the given text "STRESS and STRAIN".
arrow_forward
Are you as strong as a horse?
Purpose: To understand the concept of work and power and to calculate the power
generated by yourself or a friend.
Materials: A tape measure, stairs, and a stopwatch, cell phone, or wristwatch.
Key Physics Concept: Power is the rate of doing work. Power can be calculated by
dividing the work done by the time it takes to do the work; in this case we will do work
against gravity on a stair case (you may add your power in doing pushups to test your
arm power). Can you guess what your peak horsepower is?
You may do the stairs one at
at time or multiple stairs at a
a time; whatever is most safe
and efficient for you.
Procedure:
Observations:
Analysis:
Conclusions:
Application:
1. Will your hp change if you performed the activity for a longer duration (for example,
climbed the CN tower staircase)? In what way? Explain.
2. Research the horsepower generated by a car. How does the average person's peak
power rating compare to it? How many average people would it…
arrow_forward
I just need help with part D, thanks
arrow_forward
Help!!! Please answer part b correctly like part A. Please!!!!
arrow_forward
Problem 1: You are working in a consulting company that does a lot of hand calculations for designs in
Aerospace Industry for mechanical, thermal, and fluidic systems. You took the Virtual engineering
course, and you want to convince your boss and the team you work to move to modelling and simulation
in computers using a certain software (Ansys, Abaqus, etc). Discuss the benefits and pitfalls of computer
based models used within an industrial environment to solve problems in engineering.
arrow_forward
Task 4
arrow_forward
Help!!! Please answer all Correctly!!! Please
arrow_forward
Task 1
You are employed as a mechanical engineer within an unnamed research center, specializing in the development.
of innovative air conditioning systems. Your division is tasked with providing computer-based modeling and
design solutions using computational fluid dynamics through ANSYS software. Your primary responsibilities.
involve the analysis of horizontal channel dynamics to meet specific criteria. Under the guidance of your
immediate supervisor, you have been assigned unique responsibilities within an ongoing project. As a member of
the research team, your role includes constructing an appropriate model and executing a sequence of simulation.
iterations to explore and enhance channel performance. Figure 1 provides a visualization of the horizontal channel
under consideration. Consider 2D, incompressible, steady flowin a horizontal channel at a Reynolds number of
150. The schematic below illustrates the channel flow, not drawn to scale. For simplicity, neglect gravity. The…
arrow_forward
Case Study: Paula’s Pain
Paula has worked for Brindle Corporation for 3 years. During this time, she has worked as a machine operator/cell leader in various work cells. Recently, the plant went to mandatory 12-hour shifts and plans to remain on this schedule for several months.
Paula’s present work cell is manufacturing 3-inch diameter exhaust tubes that are made from stainless steel. These tubes get a hole punched in them, a flange welded on, and burrs ground off. The pipe then gets placed into a gage to check that it was made correctly. (The tubes weigh about six pounds.)
Paula has been performing the welding operation. She leans into the machine and loads the part into a fixture then positions the flange. Both pieces are clamped (using hand clamps) into position and the machine is cycled by depressing two palm buttons.
The gaging operation requires placing the finished part into the gage and clamping it (using hand clamps) into place. A pin is depressed to verify the position…
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Related Questions
- Group Problem: You are planning to build a log cabin in Northern Minnesota on a remote hill with a beautiful view of the setting sun. You will drag the logs up a long sometimes rocky hill to the building site by means of a rope attached to a winch. You will need a rope for this job so you aim to know how much weight the rope would safely support. You are operating on a tight budget so matching the rope strength would be a cost saver. You know that the logs are heavy, and estimate the heaviest as 1,000 lbs. From maps you verify the hill is steeped at an angle of = 70° with respect to the vertical, and you estimate a coefficient of kinetic friction between a log and the earthen hill as 0.5. When pulling a log you will ensure that the uphill acceleration is never more than 3.0 ft/s². The maximum recommended load is th of the nominal strength for the ropes considered as stated on the product labels, you have three ropes in mind: 12 kN, 18 kN, & 24 kN. Which one of these three rope…arrow_forwardPlease do Asaparrow_forwardNeed help with thisarrow_forward
- Learning Goal: To be able to find the center of gravity, the center of mass, and the centroid of a composite body. A centroid is an object's geometric center. For an object of uniform composition, its centroid is also its center of mass. Often the centroid of a complex composite body is found by, first, cutting the body into regular shaped segments, and then by calculating the weighted average of the segments' centroids. An object is made from a uniform piece of sheet metal. The object has dimensions of a = 1.25 ft, where a is the diameter of the semi-circle, b = 3.71 ft, and c = 2.30 ft. A hole with diameter d = 0.750 ft is centered at (1.09, 0.625). Figure kd- J = 0.737 Find y, the y-coordinate of the body's centroid. (Figure 1) Express your answer numerically in feet to three significant figures. View Available Hint(s) ΑΣΦ Submit Previous Answers vec 3 X Incorrect; Try Again; 2 attempts remaining ? ftarrow_forwardHelp!!! Answer all parts correctly!! Pleasearrow_forwardHelp with this would be great, thanks!arrow_forward
- Help with this would be great, thanks!arrow_forwardLearning Task 2: Changes in momentum happen every time. A fast-moving car when suddenly stopped might have damaging effects not only to the vehicle itself but also to the person riding it. Various devices have been installed in vehicles to ensure the safety of the passengers. Can you think of some safety devices installed on vehicles (public/private)? Name at least five (5) of them.arrow_forwardHelp!!! Please answer all Correctly!!! Pleasearrow_forward
- Do not give answer in image and hand writingarrow_forwardLearning Goal: A column with a wide-flange section has a flange width b = 200 mm , height h = 200 mm, web thickness tw = 8 mm , and flange thickness tf = 12 mm (Figure 1). Calculate the stresses at a point 75 mm above the neutral axis if the section supports a tensile To calculate the normal and shear stresses at a point on the cross section of a column. normal force N = 2.9 kN at the centroid, shear force V = 4.6 kN, and bending moment M = 4.8 kN • m as shown (Figure 2). The state of stress at a point is a description of the normal and shear stresses at that point. The normal stresses are generally due to both internal normal force and internal bending moment. The net result can be obtained using the principle of superposition as long as the deflections remain small and the response is elastic. Part A - Normal stress Calculate the normal stress at the point due to the internal normal force on the section. Express your answer with appropriate units to three significant figures. > View…arrow_forwardThis is an engineering problem and not a writing assignment. Please Do Not Reject. I had other engineering tutors on bartleby help me with problems similar to this one. This problem must be presented in a logical order showing the necessary steps used to arrive at an answer. Each homework problem should have the following items unless otherwise stated in the problem: a. Known: State briefly what is known about the problem. b. Schematic: Draw a schematic of the physical system or control volume. c. Assumptions: List all necessary assumptions used to complete the problem. d. Properties: Identify the source of property values not given to you in the problem. Most sources will be from a table in the textbook (i.e. Table A-4). e. Find: State what must be found. f. Analysis: Start your analysis with any necessary equations. Develop your analysis as completely as possible before inserting values and performing the calculations. Draw a box around your answers and include units and follow an…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning