Vector Mechanics For Engineers
Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter B, Problem B.73P

For the component described in the problem indicated,determine (a) the principal mass moments of inertia at the origin (b) the principal axes of inertia at the origin. Sketch the body and show the orientation of the principal axes of inertia relative to the x, y, and z axes.

Prob. B.58

Expert Solution
Check Mark
To determine

(a)

The principal mass moments of inertia at origin.

Answer to Problem B.73P

The principal mass moments of inertia at origin are 2.26(γa4tg), 17.27(γa4tg) and 19.08(γa4tg).

Explanation of Solution

Given information:

The thickness of steel sheet is t, the specific weight of steel is γ, the point O is origin, the radius of the semicircle section 2 is a, the side dimension of square plate section 2 is 2a, the centroidal axis for square section 1 is x, y and z, the centroidal section for semicircular section 2 is x, y and z, the perpendicular distance between the centroidal point P and y -axis is 0, the perpendicular distance between centroidal point Q and x -axis is 0.

The following figure illustrates different centroidal axis.

Vector Mechanics For Engineers, Chapter B, Problem B.73P , additional homework tip  1

Figure-(1).

Write the expression for the mass of section 1.

m1=γg(2a×2a×t)=4γa2tg   ....(I)

Here, the mass of the square section 1 is m1, the specific weight of the steel sheet is γ, the acceleration due the gravity is g, the length of square plate is 2a, the thickness of square plate is t.

Write the expression for the mass of section 2.

m2=γg(πr22×t)=γπr2t2g   ....(II)

Here, the mass of the square section 2 is m2, the radius of semicircular plate is r.

Write the expression for hypotenuse side AB using Pythagoras theorem in right angled triangle ABC.

AB=(AC)2+(BC)2   ....(III)

Here, the hypotenuse side in right angled triangle ABC is AB, the height of the right angled triangle ABC is AC, the base length of right angled triangle ABC is BC.

Write the expression for hypotenuse side OA using Pythagoras theorem in right angled triangle OBA.

OA=(AB)2+(OB)2   ....(IV)

Here, the hypotenuse side in right angled triangle OAB is OA, the height of the right angled triangle OBA is OB, the base length of right angled triangle OBA is AB.

Write the expression of position vector of the line joining OA.

OA=x1i^+y1j^+z1k^   ....(V)

Here, the vector along the line joining the points O and A is OA, the unit vector along x direction is i^, the unit vector along y direction is j^, the unit vector along z direction is k^, the coordinate on x -axis is x1, the coordinate on y -axis is y1, the coordinate on z -axis is z1.

Write the expression for unit vector along OA.

η^OA=OAOA   ....(VI)

Here, the unit vector along OA is η^OA.

Write the expression of mass moment of inertia of section 1 about x -axis.

(Ix)1=m112((L1)2+(L1)2)+m1((L1)2+(L1)2)   ....(VII)

Here, the mass moment of inertia of section 1 about x -axis is (Ix)1, the dimension of square plate section 1 is L1.

Write the expression of mass moment of inertia of section 2 about x -axis.

(Ix)2=m24(r2)+m2((L1)2+(r)2)   ....(VIII)

Here, the mass moment of inertia of section 2 about x -axis is (Ix)2.

Write the expression of total mass moment of inertia about x -axis.

Ix=(Ix)1+(Ix)2   ....(IX)

Here, the total mass moment of inertia about x -axis is Ix.

Write the expression of mass moment of inertia of section 1 about y -axis.

(Iy)1=m112(L12)+m1(r2)   ....(X)

Here, the mass moment of inertia of section 1 about y -axis is (Iy)1.

Write the expression of mass moment of inertia of section 2 about y -axis.

(Iy)2=m2(L12)2(12169π2)+m2((4r3π)2+L122)   ....(XI)

Here, the mass moment of inertia of section 2 about y -axis is (Iy)2.

Write the expression of total mass moment of inertia about y -axis.

Iy=(Iy)1+(Iy)2   ....(XII)

Write the expression of mass moment of inertia of section 1 about z -axis.

(Iz)1=m1L1212+m1(L12)2   ....(XIII)

Here, the mass moment of inertia of section 1 about z -axis is (Iz)1.

Write the expression of mass moment of inertia of section 2 about z -axis.

(Iz)2=m2(L12)2(14169π2)+m2((4r3π)2+(2a)2)   ....(XIV)

Here, the mass moment of inertia of section 2 about z -axis is (Iz)2.

Write the expression of total mass moment of inertia about z -axis.

Iz=(Iz)1+(Iz)2   ....(XV)

Here, the total mass moment of inertia about z -axis is Iz.

From, the symmetry in above figure about x, y and z.

(I x y)1=(I y z)1=(I z x)1=0   ....(XVI)

Write the expression for product of mass moment of inertia in x - y plane.

(Ixy)=i=1i=2((Ixy)i+mixi¯yi¯)(Ixy)=((I x y)1+m1x1¯y1¯)+((Ixy)2+m2x2¯y2¯)   ....(XVII)

Here, the product mass moment of inertia is (Ixy), the subscript limit is i, the perpendicular distance between x -axis and x axis is x1¯, the perpendicular distance between y axis and y -axis is is y1¯, the perpendicular distance between x -axis and x axis is x2¯, the perpendicular distance between y axis and y -axis is is y2¯.

Write the expression for product mass moment of inertia in y - z plane.

(Iyz)=i=1i=2((I y z')i+miyi¯zi¯)(Iyz)=((I y z)1+m1y1¯z1¯)+((I y z)2+m2y2¯z2¯)   ....(XVIII)

Here, the product mass moment of inertia is (Iyz), the subscript limit is i, the perpendicular distance between y axis and y -axis is y1¯, the perpendicular distance between z -axis and z -axis is z1¯, the perpendicular distance between y axis and y -axis is y2¯, the perpendicular distance between z -axis and z -axis is z2¯.

Write the expression for product mass moment of inertia in z - x plane.

(Izx)=i=1i=2((Iz' x)i+mixi¯zi¯)(Izx)=((I z x)1+m1x1¯z1¯)+((I z x)2+m2x2¯z2¯)   ....(XIX)

Here, the product mass moment of inertia in z - x plane is (Izx), the perpendicular distance between z -axis and z -axis is z1¯, the perpendicular distance between z -axis and z -axis is z2¯, the perpendicular distance between x -axis and x axis x1¯, the perpendicular distance between x -axis and x axis x2¯.

Write the expression of mass moments of inertia at origin.

[K3(Ix+Iy+Iz)K2+(IxIy+IyIz+IzIxIxy2Iyz2Izx2)K(IxIyIzIxIyz2IyIzx2IzIxy22IxyIyzIzx)=0]   ....(XX)

Here, the principle mass moment of inertia at origin is K.

Calculation:

Substitute a for x1, 2a for y1, a for z1 in Equation (V).

OA=ai^+2aj^+ak^

Substitute a for AC, a for BC in Equation (III).

AB=(a)2+(a)2=2a2=2a

Substitute 2a for AB, 2a for OB in Equation (IV).

OA=(2a)2+(2a)2=2a2+4a2=6a

Substitute ai^+2aj^+ak^ for OA, 6a for OA in Equation (VI).

η^OA=ai^+2aj^+ak^6a=a(i^+2j^+k^)6a=16i^+26j^+16k^

Substitute 2a for L1 in Equation (VII).

(Ix)1=m112((2a)2+(2a)2)+m1((a)2+(a)2)=2m1a23+2m1a2=8m1a23

Substitute 2a for L1, a for r in Equation (VIII).

(Ix)2=m24(a2)+m2((2a)2+(a)2)=m2a24+5m2a2=21m2a24

Substitute 8m1a23 for (Ix)1, 21m2a24 for (Ix)2, 4γa2tg for m1, γπr2t2g for m2, a for r in Equation (IX).

Ix=(8a23)(4γa2tg)+(21a24)(γπr2t2g)=(32γta43g)+(21πγa4t8g)=256γta4+63πγta424g=18.91335(γta4g)

Substitute 2a for L1, a for r in Equation (X).

(Iy)1=m112(2a)2+m1(a2)=m1a23+m1a2=4m1a23

Substitute 2a for L1, a for r in Equation (XI).

(Iy)2=m2(2a2)2(12169π2)+m2((4a3π)2+(2a)22)=0.31987(m2a2)+1.18012(m2a2)=1.499999m2a2

Substitute 4m1a23 for (Iy)1, 1.4999999m2a2 for (Iy)2, 4γa2tg for m1, γπr2t2g for m2, a for r in Equation (XII).

Iy=(4a23)(4γa2tg)+(1.499999a2)(γπr2t2g)=(4a23)(4γa2tg)+(1.49999a2)(γπa2t2g)=(γa4tg)((163)+1.49999π2)=7.68937(γa4tg)

Substitute 2a for L1 in Equation (XIII).

(Iz)1=4m1a212+m1(2a2)2=m1a23+4m1a24=4m1a2+12m1a212=4m1a23

Substitute 2a for L1, a for r in Equation (XIV).

(Iz)2=m2(2a2)2(14169π2)+m2((4a3π)2+(2a)2)=0.069873m2a2+4.18012m2a2=4.2499m2a2

Substitute m1a23 for (Iz)1, 4.21506m2a2 for (Iz)2, 4γa2tg for m1, γπr2t2g for m2 in Equation (XV).

Iz=(4a23)(4γa2tg)+4.2499(γπr2t2g)a2=(4a23)(4γa2tg)+4.2499(γπa2t2g)a2=(γa4tg)((163)+13.351452)=12.00922(γa4tg)

Substitute 0 for (I x y)1, 0 for (I x y)2, 4γa2tg for m1, γπr2t2g for m2, a for y1¯, 4a3π for x2¯, 0 for x1¯, 2a for y2¯ in Equation (XVII).

(Ixy)=(0+0(4γa2tg(a)))+(0+γπr2t2g(4a3π)2a)=(γπa2t2g(4a3π)2a)=1.3333(γa2tg)

Substitute 0 for (I y z)1, 0 for (I y z)2, 4γa2tg for m1, γπr2t2g for m2, a for y1¯, a for z1¯, 2a for y2¯, a for z2¯, in Equation (XVIII).

(Iyz)=(0+(4γa2tg)a(a))+(0+γπr2t2g(2a)(a))=(γa4tg)(4+π)=7.14159(γa4tg)

Substitute 0 for (I z x)1, 0 for (I z x)2, 4γa2tg for m1, γπr2t2g for m2, 4a3π for x2¯, 0 for x1¯, 2a for z1¯, a for z2¯ in Equation (XIX).

(Izx)=(0+4γa2tg(0)(2a))+(0+γπr2t2g(4a3π)(a))=γπa2t2g(4a23π)=(γa4tg)0.666667

Substitute 18.91335(γta4g) for Ix, 7.68937(γa4tg) for Iy, 12.00922(γa4tg) for Iz, (γa4tg)2 for (Izx), 7.14159(γa4tg) for (Iyz) and 1.3333(γa2tg) for (Ixy) in Equation (XX).

Vector Mechanics For Engineers, Chapter B, Problem B.73P , additional homework tip  2

Vector Mechanics For Engineers, Chapter B, Problem B.73P , additional homework tip  3

K2=17.27(γa4tg)K3=19.08(γa4tg)

Conclusion:

The principal mass moments of inertia at origin are 2.26(γa4tg) , 17.27(γa4tg) and 19.08(γa4tg).

Expert Solution
Check Mark
To determine

(b)

The principal axes of inertia at the origin.

Answer to Problem B.73P

The principal axes of inertia at the origin at K1 are (θx)1=85°, (θy)1=36.8° and (θz)1=53.7°.

The principal axes of inertia at the origin at K2 are (θx)2=81.7°, (θy)2=54.7° and (θz)2=143.4°.

The principal axes of inertia at the origin at K3 are (θx)3=9.7°, (θy)3=99° and (θz)3=86.3°.

Explanation of Solution

Write the expression for direction cosine in terms of K1.

(IxK1)(λx)1Ixy(λy)1Izx(λz)1=0   ....(XXI)

Write the expression for direction cosine in terms of K1.

Ixy(λx)1+(IyK1)(λy)1Iyz(λz)1=0   ....(XXII)

Write the expression for the direction cosines at x, y and z axis.

(λx)12+(λy)12+(λz)12=1   ....(XXIII)

Write the expression for the principal axes of the inertia at x-axis.

(θx)1=cos1(λx)1   ....(XXIV)

Write the expression for the principal axes of the inertia at y-axis.

(θy)1=cos1(λy)1   ....(XXV)

Write the expression for the principal axes of the inertia at z-axis.

(θz)1=cos1(λz)1   ....(XXVI)

Write the expression for direction cosine in terms of K2.

(IxK2)(λx)2Ixy(λy)2Izx(λz)2=0   ....(XXVII)

Write the expression for direction cosine in terms of K2.

Ixy(λx)2+(IyK2)(λy)2Iyz(λz)2=0   ....(XXVIII)

Write the expression for the direction cosines at x, y and z axis.

(λx)22+(λy)22+(λz)22=1   ....(XXIX)

Write the expression for the principal axes of the inertia at x-axis.

(θx)2=cos1(λx)2   ....(XXX)

Write the expression for the principal axes of the inertia at y-axis.

(θy)2=cos1(λy)2   ....(XXXI)

Write the expression for the principal axes of the inertia at z-axis.

(θz)2=cos1(λz)2   ....(XXXII)

Write the expression for direction cosine in terms of K3.

(IxK3)(λx)3Ixy(λy)3Izx(λz)3=0   ....(XXXIII)

Write the expression for direction cosine in terms of K3.

Ixy(λx)3+(IyK3)(λy)3Iyz(λz)3=0   ....(XXXIV)

Write the expression for the direction cosines at x, y and z axis.

(λx)32+(λy)32+(λz)32=1   ....(XXXV)

Write the expression for the principal axes of the inertia at x-axis.

(θx)3=cos1(λx)3   ....(XXXVI)

Write the expression for the principal axes of the inertia at y-axis.

(θy)3=cos1(λy)3   ....(XXXVII)

Write the expression for the principal axes of the inertia at z-axis.

(θz)3=cos1(λz)3   ....(XXXVIII)

Calculation:

Substitute 2.26(γa4tg) for K1, 18.91335(γta4g) for Ix, (γa4tg)2 for (Izx) and 1.3333(γa2tg) for (Ixy) in Equation (XXI).

[(18.91335(γta4g)2.26(γa4tg))(λx)11.3333(γa2tg)(λy)1(γa4tg)2(λz)1=0][(18.91332.26)(γta4g)(λx)11.3333(γta4g)(λy)10.6666(γta4g)(λz)1=0][12.49087(λx)1(λy)10.5(λz)1](γta4g)(1.3333)=012.49087(λx)1(λy)10.5(λz)1   ....(XXXIX)

Substitute 2.26(γa4tg) for K1, 7.68937(γa4tg) for Iy, 7.14159(γa4tg) for (Iyz) and 1.3333(γa2tg) for (Ixy) in Equation (XXII).

[(1.3333(γa2tg))(λx)1+(7.68937(γa4tg)2.26(γa4tg))(λy)17.14159(γa4tg)(λz)1=0][1.3333(γa2tg)(λx)1+(7.68952.2589)(γa4tg)(λy)17.1415(γa4tg)(λz)1=0](0.2452(λx)1+(λy)11.3150(λz)1)(γa4tg)5.4306=00.2452(λx)1+(λy)11.3150(λz)1=0   ....(XL)

Add Equation (XXXIX) and Equation (XL).

(0.2452(λx)1+(λy)11.3150(λz)1)+(12.49087(λx)1(λy)10.5(λz)1)(0.2452(λx)11.3150(λz)1)+(12.49087(λx)10.5(λz)1)(λz)1=6.7465(λx)1 (XLI)

Substitute 6.7465(λx)1 for (λz)1 in Equation (XL).

0.2452(λx)1+(λy)11.3150(6.7465(λx)1)=00.2452(λx)1+(λy)18.8716(λx)1=0(λy)1=9.1176(λx)1   ....(XLII)

Substitute 6.7465(λx)1 for (λz)1 and 9.1176(λx)1 for (λy)1 in Equation (XXIII).

(λx)12+(9.1176(λx)1)2+(6.7465(λx)1)2=1(λx)12+(83.1306(λx)12)+(45.5152(λx)12)=1(λx)12(1+(83.1306)+(45.5152))=1(λx)1=0.08782

Substitute 0.08782 for (λx)1 in Equation (XLI).

(λz)1=6.7465(0.08782)=0.5925

Substitute 0.08782 for (λx)1 in Equation (XLII).

(λy)1=9.1176(0.08782)=0.8007

Substitute 0.08782 for (λx)1 in Equation (XXIV).

(θx)1=cos1(0.08782)=84.9617°85°

Substitute 0.8007 for (λy)1 in Equation (XXV).

(θy)1=cos1(0.8007)=36.8°

Substitute 0.5925 for (λz)1 in Equation (XXVI).

(θz)1=cos1(0.5925)=53.665°53.7°

Substitute 17.27(γa4tg) for K2, 18.91335(γta4g) for Ix, (γa4tg)2 for (Izx) and 1.3333(γa2tg) for (Ixy) in Equation (XXVII).

[(18.91335(γta4g)17.27(γa4tg))(λx)21.3333(γa2tg)(λy)2(γa4tg)2(λz)2=0][(18.913317.27)(γta4g)(λx)21.3333(γta4g)(λy)20.6666(γta4g)(λz)2=0][1.2304(λx)2(λy)20.5(λz)2](γta4g)(1.3333)=01.2304(λx)2(λy)20.5(λz)2=0   ....(XLIII)

Substitute 17.27(γa4tg) for K2, 7.68937(γa4tg) for Iy, 7.14159(γa4tg) for (Iyz) and 1.3333(γa2tg) for (Ixy) in Equation (XXVIII).

[(1.3333(γa2tg))(λx)2+(7.68937(γa4tg)17.27(γa4tg))(λy)27.14159(γa4tg)(λz)2=0][1.3333(γa2tg)(λx)2+(7.689517.27)(γa4tg)(λy)27.1415(γa4tg)(λz)2=0](0.1391(λx)2+(λy)2+0.7452(λz)2)(γa4tg)(9.5805)=00.1391(λx)2+(λy)2+0.7452(λz)2=0   ....(XLIV)

Add Equation (XLIII) and Equation (XLIV).

(1.2304(λx)2(λy)20.5(λz)2)+(0.1391(λx)2+(λy)2+0.7452(λz)2)(1.2304(λx)20.5(λz)2)+(0.1391(λx)2+0.7452(λz)2)(λz)2=5.5851(λx)2 (XLV)

Substitute 5.5851(λx)2 for (λz)2 in Equation (XLIV).

0.1391(λx)2+(λy)2+0.7452(5.5851(λx)2)=00.1391(λx)2+(λy)2+0.7452(4.1620(λx)2)=0(λy)2=4.0230(λx)2   ....(XLVI)

Substitute 5.5851(λx)2 for (λz)2 and 4.0230(λx)2 for (λy)2 in Equation (XXIX).

(λx)12+(4.0230(λx)2)2+(5.5851(λx)2)2=1(λx)22+(16.1845(λx)22)+(31.1933(λx)22)=1(λx)22(1+(16.1845)+(31.1933))=1(λx)2=0.1437

Substitute 0.1437 for (λx)2 in Equation (XLV).

(λz)2=5.5851(0.1437)=0.8029

Substitute 0.1437 for (λx)2 in Equation (XLVI).

(λy)2=4.0230(0.1437)=0.5783

Substitute 0.1437 for (λx)2 in Equation (XXX).

(θx)2=cos1(0.1437)=81.7°

Substitute 0.5783 for (λy)2 in Equation (XXXI).

(θy)2=cos1(0.5783)=54.7°

Substitute 0.8029 for (λz)2 in Equation (XXXII).

(θz)2=cos1(0.8029)=143.4°

Substitute 19.08(γa4tg) for K3, 18.91335(γta4g) for Ix, (γa4tg)2 for (Izx) and 1.3333(γa2tg) for (Ixy) in Equation (XXXIII).

[(18.91335(γta4g)19.08(γa4tg))(λx)31.3333(γa2tg)(λy)3(γa4tg)2(λz)3=0][(18.913319.08)(γta4g)(λx)31.3333(γta4g)(λy)30.6666(γta4g)(λz)3=0][0.1253(λx)3(λy)30.5(λz)3](γta4g)(1.3333)=00.1253(λx)3(λy)30.5(λz)3=0   ....(XLVII)

Substitute 19.08(γa4tg) for K3, 7.68937(γa4tg) for Iy, 7.14159(γa4tg) for (Iyz) and 1.3333(γa2tg) for (Ixy) in Equation (XXXIV).

[(1.3333(γa2tg))(λx)3+(7.68937(γa4tg)19.08(γa4tg))(λy)37.14159(γa4tg)(λz)3=0][1.3333(γa2tg)(λx)3+(7.689519.08)(γa4tg)(λy)37.1415(γa4tg)(λz)3=0](0.1170(λx)3+(λy)3+0.6269(λz)3)(γa4tg)(11.3905)=00.1170(λx)3+(λy)3+0.6269(λz)3=0 … (XLVIII)

Add Equation (XLVII) and Equation (XLVIII).

(0.1253(λx)3(λy)30.5(λz)3)+(0.1170(λx)3+(λy)3+0.6269(λz)3)(0.1253(λx)30.5(λz)3)+(0.1170(λx)3+0.6269(λz)3)(λz)3=0.06522(λx)3 (XLIX)

Substitute 0.06522(λx)3 for (λz)3 in Equation (XLVIII).

0.1170(λx)3+(λy)3+0.6269(0.06522(λx)3)=00.1170(λx)3+(λy)3+(0.04088(λx)3)=0(λy)3=0.1579(λx)3   ....(L)

Substitute 0.06522(λx)3 for (λz)3 and 0.1579(λx)3 for (λy)3 in Equation (XXXV).

(λx)12+(0.1579(λx)3)2+(0.06522(λx)3)2=1(λx)32+(0.02493(λx)32)+(0.06522(λx)32)=1(λx)32(1+(0.02493)+(0.06522))=1(λx)3=0.9857

Substitute 0.9857 for (λx)3 in Equation (XLIX).

(λz)3=0.06522(0.9857)=0.06429

Substitute 0.9857 for (λx)3 in Equation (L).

(λy)3=0.1579(0.9857)=0.1556

Substitute 0.9857 for (λx)3 in Equation (XXXVI).

(θx)3=cos1(0.9857)=9.7°

Substitute 0.1556 for (λy)3 in Equation (XXXVII).

(θy)3=cos1(0.1556)=99°

Substitute 0.06429 for (λz)3 in Equation (XXXVIII).

(θz)3=cos1(0.06429)=86.3°

Conclusion:

The principal axes of inertia at the origin at K1 are (θx)1=85°, (θy)1=36.8° and (θz)1=53.7°.

The principal axes of inertia at the origin at K2 are (θx)2=81.7°, (θy)2=54.7° and (θz)2=143.4°.

The principal axes of inertia at the origin at K3 are (θx)3=9.7°, (θy)3=99° and (θz)3=86.3°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three cables are pulling on a ring located at the origin, as shown in the diagram below.  FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°.  FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°.  Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N.  Specify the direction of FC using its coordinate direction angles.
turbomachienery
auto controls

Chapter B Solutions

Vector Mechanics For Engineers

Ch. B - Prob. B.11PCh. B - Prob. B.12PCh. B - Determine by direct integration the mass moment of...Ch. B - Prob. B.14PCh. B - A thin, rectangular plate with a mass m is welded...Ch. B - A thin steel wire is bent into the shape shown....Ch. B - Prob. B.17PCh. B - Prob. B.18PCh. B - Prob. B.19PCh. B - Prob. B.20PCh. B - Prob. B.21PCh. B - Prob. B.22PCh. B - Prob. B.23PCh. B - Prob. B.24PCh. B - Prob. B.25PCh. B - Prob. B.26PCh. B - Prob. B.27PCh. B - Prob. B.28PCh. B - Prob. B.29PCh. B - Prob. B.30PCh. B - Prob. B.31PCh. B - Determine the mass moments of inertia and the...Ch. B - Prob. B.33PCh. B - Prob. B.34PCh. B - Prob. B.35PCh. B - Prob. B.36PCh. B - Prob. B.37PCh. B - Prob. B.38PCh. B - Prob. B.39PCh. B - Prob. B.40PCh. B - Prob. B.41PCh. B - Prob. B.42PCh. B - Prob. B.43PCh. B - Prob. B.44PCh. B - A section of sheet steel 2 mm thick is cut and...Ch. B - Prob. B.46PCh. B - Prob. B.47PCh. B - Prob. B.48PCh. B - Prob. B.49PCh. B - Prob. B.50PCh. B - Prob. B.51PCh. B - Prob. B.52PCh. B - Prob. B.53PCh. B - Prob. B.54PCh. B - Prob. B.55PCh. B - Determine the mass moment ofinertia of the steel...Ch. B - Prob. B.57PCh. B - Prob. B.58PCh. B - Determine the mass moment of inertia of the...Ch. B - Prob. B.60PCh. B - Prob. B.61PCh. B - Prob. B.62PCh. B - Prob. B.63PCh. B - Prob. B.64PCh. B - Prob. B.65PCh. B - Prob. B.66PCh. B - Prob. B.67PCh. B - Prob. B.68PCh. B - Prob. B.69PCh. B - Prob. B.70PCh. B - For the component described in the problem...Ch. B - Prob. B.72PCh. B - For the component described in the problem...Ch. B - Prob. B.74P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY