Vector Mechanics For Engineers
Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter B, Problem B.61P
To determine

The mass moment of inertia of the machine component with respect to the axis through the origin characterized by the unit vector (3i6j+2k)/7.

Expert Solution & Answer
Check Mark

Answer to Problem B.61P

The mass moment of inertia of the machine component with respect to the axis through the origin by the unit vector is 42.75×103lbfts2.

Explanation of Solution

Given information:

The diameter of the formed steel wire is 18in, unit vector is (3i6j+2k)/7 and the specific weight of the steel is 490lb/ft3.

The below figure represents the schematic diagram of the wire.

Vector Mechanics For Engineers, Chapter B, Problem B.61P

Figure-(1)

Concept used:

Expression of mass of the steel wire.

m=ρSTV ........ (I)

Here, density of the steel wire is ρST and the volume of the steel wire is V.

Expression of density of the steel wire.

ρST=γSTg ........ (II)

Here, the specific weight of the steel wire is γST and the acceleration due to gravity is g.

Substitute γSTg for ρST in Equation (I).

m=(γSTg)V ........ (III)

For section (1).

Substitute m1 for m and V1 for V in Equation (III).

m1=(γSTg)V1 ........ (IV)

Expression of volume of the steel wire after formation for section (1).

V1=(π4d12)(πd) ........ (V)

Here, the diameter of the formed wire is d1 and the diameter of the wire is d.

For section (2).

Substitute m2 for m and V2 for V in Equation (III).

m2=(γSTg)V2 ........ (VI)

Expression of volume of the steel wire after formation for section (2).

V2=(π4d12)(πd) ........ (VII)

For section (3).

Substitute m3 for m and V3 for V in Equation (III).

m3=(γSTg)V3 ........ (VIII)

Expression of volume of the steel wire after formation for section (3).

V3=(π4d12)(d) ........ (IX)

For section (4).

Substitute m4 for m and V4 for V in Equation (III).

m4=(γSTg)V4 ........ (X)

Expression of volume of the steel wire after formation for section (4).

V4=(π4d12)(d) ........ (XI)

Expression of Moment of inertia about x axis of the wire.

Ix=(Ix)1+(Ix)2+(Ix)3+(Ix)4 ........ (XII)

Here, the moment of inertia of section (1) about the x axis is (Ix)1, the moment of inertia of section (2) about the x axis is (Ix)2, the moment of inertia of section (3) about the x axis is (Ix)3 and the moment of inertia of section (4) about the x axis is (Ix)4.

Expression of moment of inertia of section (1) about the x axis.

(Ix)1=12m1d2 ........ (XIII)

Expression of moment of inertia of section (2) about the x axis.

(Ix)2=12m2d2+m2d2 ........ (XIV)

Expression of moment of inertia of section (3) about the x axis.

(Ix)3=112m3d2+m3{(d2)2+d2} ........ (XV)

Expression of moment of inertia of section (4) about the x axis.

(Ix)4=112m4d2+m4{(d2)2+d2} ........ (XVI)

Expression of Moment of inertia about y axis of the wire.

Iy=(Iy)1+(Iy)2+(Iy)3+(Iy)4 ........ (XVII)

Here, the moment of inertia of section (1) about the y axis is (Iy)1, the moment of inertia of section (2) about the y axis is (Iy)2, the moment of inertia of section (3) about the y axis is (Iy)3 and the moment of inertia of section (4) about the y axis is (Iy)4.

Expression of moment of inertia of section (1) about the y axis.

(Iy)1=m1d2 ........ (XVIII)

Expression of moment of inertia of section (2) about the y axis.

(Iy)2=m2d2 ........ (XIX)

Expression of moment of inertia of section (3) about the y axis.

(Iy)3=m3d2 ........ (XX)

Expression of moment of inertia of section (4) about the y axis.

(Iy)4=m4d2 ........ (XXI)

Expression of Moment of inertia about z axis of the wire.

Iz=(Iz)1+(Iz)2+(Iz)3+(Iz)4 ........ (XXII)

Here, the moment of inertia of section (1) about the z axis is (Iz)1, the moment of inertia of section (2) about the z axis is (Iz)2, the moment of inertia of section (3) about the z axis is (Iz)3 and the moment of inertia of section (4) about the z axis is (Iz)4.

Expression of moment of inertia of section (1) about the z axis.

(Iz)1=12m1d2 ........ (XXIII)

Expression of moment of inertia of section (2) about the z axis.

(Iz)2=12m2d2+m2d2 ........ (XXIV)

Expression of moment of inertia of section (3) about the z axis.

(Iz)3=13m3d2 ........ (XXV)

Expression of moment of inertia of section (4) about the z axis.

(Iz)4=13m4d2 ........ (XXVI)

Mass products of inertia Ixy is expressed as follows:

Ixy=(Ixy+mxy) …… (XXVII)

Here. Mass products of inertia is Ixy.

Mass products of inertia Iyz is expressed as follows:

Iyz=(Iyz) …… (XXVIII)

Here. Mass products of inertia is Iyz.

Mass products of inertia Izx is expressed as follows:

Izx=(Izx) ……(XXIX)

Here. Mass products of inertia is Izx.

Calculation:

Substitute 18in for d1 and 18in for d in Equation (V).

V1=(π4(18in)2)(π(18in))=(0.01227in2)(π(18in))=(0.694in3)(1ft12in)(1ft12in)(1ft12in)=4.016×104ft3

Substitute 4.016×104ft3 for V2, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (IV).

m1=(490lb/ft332.2ft/s2)(4.016×104ft3)=(15.217lbs2/ft4)(4.016×104ft3)=6.1112×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (VII).

V2=(π4(18in)2)(π(18in))=(0.01227in2)(π(18in))=(0.694in3)(1ft12in)(1ft12in)(1ft12in)=4.016×104ft3

Substitute 4.016×104ft3 for V2, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (VI).

m2=(490lb/ft332.2ft/s2)(4.016×104ft3)=(15.217lbs2/ft4)(4.016×104ft3)=6.1112×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (IX).

V3=(π4(18in)2)(18in)=(0.01227in2)(18in)=(0.22086in3)(1ft12in)(1ft12in)(1ft12in)=1.2783×104ft3

Substitute 1.2783×104ft3 for V3, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (VIII).

m3=(490lb/ft332.2ft/s2)(1.2783×104ft3)=(15.217lbs2/ft4)(1.2783×104ft3)=1.945×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (XI).

V4=(π4(18in)2)(18in)=(0.01227in2)(18in)=(0.22086in3)(1ft12in)(1ft12in)(1ft12in)=1.2783×104ft3

Substitute 1.2783×104ft3 for V4, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (X).

m4=(490lb/ft332.2ft/s2)(1.2783×104ft3)=(15.217lbs2/ft4)(1.2783×104ft3)=1.945×103lbs2/ft

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XIII).

(Ix)1=12(6.1112×103lbs2/ft)(18in)2=12(6.1112×103lbs2/ft){(18in)(1ft12in)}2=12(6.1112×103lbs2/ft)(2.25ft2)=6.8751×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XIV).

(Ix)2=12(6.1112×103lbs2/ft)(18in)2+(6.1112×103lbs2/ft)(18in)2=[12(6.1112×103lbs2/ft){(18in)(1ft12in)}2+(6.1112×103lbs2/ft){(18in)(1ft12in)}2]=(6.8751×103fts2)+(13.7502×103fts2)=20.6252×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XV).

(Ix)3=[112(1.945×103lbs2/ft)(18in)2+(1.945×103lbs2/ft){(18in2)2+(18in)2}]=[112(1.945×103lbs2/ft){(18in)(1ft12in)}2+(1.945×103lbs2/ft)[{(18in2)(1ft12in)}2+{(18in)(1ft12in)}2]]=(0.3647×103lbfts2)+(5.4712×103lbfts2)=5.8359×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XVI).

(Ix)4=[112(1.945×103lbs2/ft)(18in)2+(1.945×103lbs2/ft){(18in2)2+(18in)2}]=[112(1.945×103lbs2/ft){(18in)(1ft12in)}2+(1.945×103lbs2/ft)[{(18in2)(1ft12in)}2+{(18in)(1ft12in)}2]]=(0.3647×103lbfts2)+(5.4712×103lbfts2)=5.8359×103lbfts2

Substitute 6.8751×103lbfts2 for (Ix)1, 20.6252×103lbfts2 for (Ix)2, 5.8359×103lbfts2 for (Ix)3 and 5.8359×103lbfts2 for (Ix)4 in Equation (XII).

Ix=[(6.8751×103lbfts2)+(20.6252×103lbfts2)+(5.8359×103lbfts2)+(5.8359×103lbfts2)]=(27.5003×103lbfts2)+(11.6718×103lbfts2)=39.1721×103lbfts2

Thus, the mass moment of inertia of the wire with respect to x axis is 39.1721×103lbfts2

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XVIII).

(Iy)1=(6.1112×103lbs2/ft)(18in)2=(6.1112×103lbs2/ft){(18in)(1ft12in)}2=(6.1112×103lbs2/ft)(2.25ft2)=13.7502×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XIX).

(Iy)2=(6.1112×103lbs2/ft)(18in)2=(6.1112×103lbs2/ft){(18in)(1ft12in)}2=(6.1112×103lbs2/ft)(2.25ft2)=13.7502×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XX).

(Iy)3=(1.945×103lbs2/ft)(18in)2=(1.945×103lbs2/ft){(18in)(1ft12in)}2=4.3769×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XXI).

(Iy)4=(1.945×103lbs2/ft)(18in)2=(1.945×103lbs2/ft){(18in)(1ft12in)}2=4.3769×103lbfts2

Substitute 13.7502×103lbfts2 for (Iy)1, 13.7502×103lbfts2 for (Iy)2, 4.3769×103lbfts2 for (Ix)3 and 4.3769×103lbfts2 for (Ix)4 in Equation (XVII).

Iy=[(13.7502×103lbfts2)+(13.7502×103lbfts2)+(4.3769×103lbfts2)+(4.3769×103lbfts2)]=(27.5004×103lbfts2)+(8.7538×103lbfts2)=36.2542×103lbfts2

Thus, the mass moment of inertia of the wire with respect to y axis is 36.2542×103lbfts2.

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XXIII).

(Iz)1=12(6.1112×103lbs2/ft)(18in)2=12(6.1112×103lbs2/ft){(18in)(1ft12in)}2=12(6.1112×103lbs2/ft)(2.25ft2)=6.8751×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XXIV).

(Iz)2=12(6.1112×103lbs2/ft)(18in)2+(6.1112×103lbs2/ft)(18in)2=[12(6.1112×103lbs2/ft){(18in)(1ft12in)}2+(6.1112×103lbs2/ft){(18in)(1ft12in)}2]=(6.8751×103fts2)+(13.7502×103fts2)=20.6252×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XXV).

(Iz)3=13(1.945×103lbs2/ft)(18in)2=13(1.945×103lbs2/ft){(18in)(1ft12in)}2=1.4590×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XXVI).

(Iz)4=13(1.945×103lbs2/ft)(18in)2=13(1.945×103lbs2/ft){(18in)(1ft12in)}2=1.4590×103lbfts2

Substitute 6.8751×103lbfts2 for (Iz)1, 20.6252×103lbfts2 for (Iz)2, 1.4590×103lbfts2 for (Iz)3 and 1.4590×103lbfts2 for (Iz)4 in Equation (XXII).

Iz=[(6.8751×103lbfts2)+(20.6252×103lbfts2)+(1.4590×103lbfts2)+(1.4590×103lbfts2)]=(27.5003×103lbfts2)+(3.098×103lbfts2)=30.5983×103lbfts2

Product of inertia (Ixy)1,(Ixy)2,(Ixy)3,(Ixy)4,(Iyz)1,(Iyz)2,(Izx)3,(Izx)4,y1,y2,x3andx4 are zero due to symmetry.

Substitute 0 for all product of inertia (Ixy) in equation (XXVII).

Ixy=(0+mxy)Ixy=m2x2y2Ixy=(6.1112×103)×(2×18π×12)(1812)Ixy=8.7536×103lbfts2

Substitute (m3y3z3)+(m4y4z4) for product of inertia (Iyz) in equation (XXVIII).

Iyz=(m3y3z3)+(m4y4z4)Iyz=((1.945×103)×y3z3)+((1.945×103)y3(z3))(Y3=Y4z4=z3)Iyz=0

Substitute 0 for product of inertia (Izx) in equation (XXIX).

Izx=0

Mass moment of inertia of the machine component with respect to the axis through the origin by the unit vector is calculated as follows:

I=Ixλx2+Iyλy2+Izλz22Ixyλxλy2Iyzλzλy2IzxλzλxI=[(39.1721×103)(37)2+(36.2542×103)(67)2+(30.5983×103)(27)22×(8.7536×103)(37)(67)00]×103I=(7.1948+26.6357+2.4978+6.4312)×103I=42.75×103lbfts2

Conclusion:

The mass moment of inertia of the machine component with respect to the axis through the origin by the unit vector is 42.75×103lbfts2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A hot surface at 150°C is to be cooled by attaching 3-cm-long, 0.25-cm-diameter aluminum pin fins (k = 237 W/m-K) to it, with a center- to-center distance of 0.6 cm. The temperature of the surrounding medium is 30°C, and the heat transfer coefficient on the surfaces is 35 W/m²K. Determine the rate of heat transfer from the surface for a 1-m × 1-m section of the plate. Also determine the overall effectiveness of the fins. 0.6 cm 0.25 cm The total rate of heat transfer is kW. The fin effectiveness is
Consider a stainless steel spoon (k = 8.7 Btu/h·ft·°F) partially immersed in boiling water at 200°F in a kitchen at 75°F. The handle of the spoon has a cross section of 0.08 in × 0.5 in and extends 7 in in the air from the free surface of the water. The heat transfer coefficient at the exposed surfaces of the spoon handle is 3 Btu/h·ft2·°F.   NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.  A spoon is placed inside the container, such that the distance of the water level from the top end of the handle of the spoon is 7 meters. T sub air is indicated in the region outside the container.       Identify the assumptions required to solve the problem.   Check All That Apply One-dimensional heat transfer analysis is used to solve the problem. One-dimensional heat transfer analysis is used to solve the problem. Bi-dimensional heat transfer analysis is used to solve the problem. Bi-dimensional heat transfer analysis is…
A turbine blade made of a metal alloy (k=17 W/m-K) has a length of 5.3 cm, a perimeter of 11 cm, and a cross-sectional area of 5.13 cm². The turbine blade is exposed to hot gas from the combustion chamber at 1133°C with a convection heat transfer coefficient of 538 W/m²K. The base of the turbine blade maintains a constant temperature of 450°C and the tip is adiabatic. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Hot gas h=538 W/m²K -Turbine blade k = 17 W/m-K p=11 cm, L=5.3 cm A = 5.13 cm² -T=450°C Determine the heat transfer rate to the turbine blade. W. The heat transfer rate is

Chapter B Solutions

Vector Mechanics For Engineers

Ch. B - Prob. B.11PCh. B - Prob. B.12PCh. B - Determine by direct integration the mass moment of...Ch. B - Prob. B.14PCh. B - A thin, rectangular plate with a mass m is welded...Ch. B - A thin steel wire is bent into the shape shown....Ch. B - Prob. B.17PCh. B - Prob. B.18PCh. B - Prob. B.19PCh. B - Prob. B.20PCh. B - Prob. B.21PCh. B - Prob. B.22PCh. B - Prob. B.23PCh. B - Prob. B.24PCh. B - Prob. B.25PCh. B - Prob. B.26PCh. B - Prob. B.27PCh. B - Prob. B.28PCh. B - Prob. B.29PCh. B - Prob. B.30PCh. B - Prob. B.31PCh. B - Determine the mass moments of inertia and the...Ch. B - Prob. B.33PCh. B - Prob. B.34PCh. B - Prob. B.35PCh. B - Prob. B.36PCh. B - Prob. B.37PCh. B - Prob. B.38PCh. B - Prob. B.39PCh. B - Prob. B.40PCh. B - Prob. B.41PCh. B - Prob. B.42PCh. B - Prob. B.43PCh. B - Prob. B.44PCh. B - A section of sheet steel 2 mm thick is cut and...Ch. B - Prob. B.46PCh. B - Prob. B.47PCh. B - Prob. B.48PCh. B - Prob. B.49PCh. B - Prob. B.50PCh. B - Prob. B.51PCh. B - Prob. B.52PCh. B - Prob. B.53PCh. B - Prob. B.54PCh. B - Prob. B.55PCh. B - Determine the mass moment ofinertia of the steel...Ch. B - Prob. B.57PCh. B - Prob. B.58PCh. B - Determine the mass moment of inertia of the...Ch. B - Prob. B.60PCh. B - Prob. B.61PCh. B - Prob. B.62PCh. B - Prob. B.63PCh. B - Prob. B.64PCh. B - Prob. B.65PCh. B - Prob. B.66PCh. B - Prob. B.67PCh. B - Prob. B.68PCh. B - Prob. B.69PCh. B - Prob. B.70PCh. B - For the component described in the problem...Ch. B - Prob. B.72PCh. B - For the component described in the problem...Ch. B - Prob. B.74P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY