Vector Mechanics For Engineers
Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter B, Problem B.37P
To determine

The mass moment of inertia of the wire with respect to x ,y and z axis.

Expert Solution & Answer
Check Mark

Answer to Problem B.37P

The mass moment of inertia of the wire with respect to x axis is 39.1721×103lbfts2.

The mass moment of inertia of the wire with respect to y axis is 36.2542×103lbfts2.

The mass moment of inertia of the wire with respect to z axis is 30.5983×103lbfts2

Explanation of Solution

Given information:

The diameter of the formed steel wire is 18in and the specific weight of the steel is 490lb/ft3.

The below figure represent the schematic diagram of the wire.

Vector Mechanics For Engineers, Chapter B, Problem B.37P

Figure-(1)

Expression of mass of the steel wire.

m=ρSTV    ......(I)

Here, density of the steel wire is ρST and the volume of the steel wire is V.

Expression of density of the steel wire.

ρST=γSTg    ......(II)

Here, the specific weight of the steel wire is γST and the acceleration due to gravity is g.

Substitute γSTg for ρST in Equation (I).

m=(γSTg)V    ......(III)

For section (1).

Substitute m1 for m and V1 for V in Equation (III).

m1=(γSTg)V1    ......(IV)

Expression of volume of the steel wire after formation for section (1).

V1=(π4d12)(πd)    ......(V)

Here, the diameter of the formed wire is d1 and the diameter of the wire is d.

For section (2).

Substitute m2 for m and V2 for V in Equation (III).

m2=(γSTg)V2    ......(VI)

Expression of volume of the steel wire after formation for section (2).

V2=(π4d12)(πd)    ......(VII)

For section (3).

Substitute m3 for m and V3 for V in Equation (III).

m3=(γSTg)V3    ......(VIII)

Expression of volume of the steel wire after formation for section (3).

V3=(π4d12)(d)    ......(IX)

For section (4).

Substitute m4 for m and V4 for V in Equation (III).

m4=(γSTg)V4    ......(X)

Expression of volume of the steel wire after formation for section (4).

V4=(π4d12)(d)    ......(XI)

Expression of Moment of inertia about x axis of the wire.

Ix=(Ix)1+(Ix)2+(Ix)3+(Ix)4    ......(XII)

Here, the moment of inertia of section (1) about the x axis is (Ix)1, the moment of inertia of section (2) about the x axis is (Ix)2 ,the moment of inertia of section (3) about the x axis is (Ix)3 and the moment of inertia of section (4) about the x axis is (Ix)4.

Expression of moment of inertia of section (1) about the x axis.

(Ix)1=12m1d2    ......(XIII)

Expression of moment of inertia of section (2) about the x axis.

(Ix)2=12m2d2+m2d2    ......(XIV)

Expression of moment of inertia of section (3) about the x axis.

(Ix)3=112m3d2+m3{(d2)2+d2}    ......(XV)

Expression of moment of inertia of section (4) about the x axis.

(Ix)4=112m4d2+m4{(d2)2+d2}    ......(XVI)

Expression of Moment of inertia about y axis of the wire.

Iy=(Iy)1+(Iy)2+(Iy)3+(Iy)4    ......(XVII)

Here, the moment of inertia of section (1) about the y axis is (Iy)1, the moment of inertia of section (2) about the y axis is (Iy)2 ,the moment of inertia of section (3) about the y axis is (Iy)3 and the moment of inertia of section (4) about the y axis is (Iy)4.

Expression of moment of inertia of section (1) about the y axis.

(Iy)1=m1d2    ......(XVIII)

Expression of moment of inertia of section (2) about the y axis.

(Iy)2=m2d2    ......(XIX)

Expression of moment of inertia of section (3) about the y axis.

(Iy)3=m3d2    ......(XX)

Expression of moment of inertia of section (4) about the y axis.

(Iy)4=m4d2    ......(XXI)

Expression of Moment of inertia about z axis of the wire.

Iz=(Iz)1+(Iz)2+(Iz)3+(Iz)4    ......(XXII)

Here, the moment of inertia of section (1) about the z axis is (Iz)1, the moment of inertia of section (2) about the z axis is (Iz)2 ,the moment of inertia of section (3) about the z axis is (Iz)3 and the moment of inertia of section (4) about the z axis is (Iz)4.

Expression of moment of inertia of section (1) about the z axis.

(Iz)1=12m1d2    ......(XXIII)

Expression of moment of inertia of section (2) about the z axis.

(Iz)2=12m2d2+m2d2    ......(XXIV)

Expression of moment of inertia of section (3) about the z axis.

(Iz)3=13m3d2    ......(XXV)

Expression of moment of inertia of section (4) about the z axis.

(Iz)4=13m4d2    ......(XXVI)

Calculation:

Substitute 18in for d1 and 18in for d in Equation (V).

V1=(π4(18in)2)(π(18in))=(0.01227in2)(π(18in))=(0.694in3)(1ft12in)(1ft12in)(1ft12in)=4.016×104ft3

Substitute 4.016×104ft3 for V2, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (IV).

m1=(490lb/ft332.2ft/s2)(4.016×104ft3)=(15.217lbs2/ft4)(4.016×104ft3)=6.1112×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (VII).

V2=(π4(18in)2)(π(18in))=(0.01227in2)(π(18in))=(0.694in3)(1ft12in)(1ft12in)(1ft12in)=4.016×104ft3

Substitute 4.016×104ft3 for V2, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (VI).

m2=(490lb/ft332.2ft/s2)(4.016×104ft3)=(15.217lbs2/ft4)(4.016×104ft3)=6.1112×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (IX).

V3=(π4(18in)2)(18in)=(0.01227in2)(18in)=(0.22086in3)(1ft12in)(1ft12in)(1ft12in)=1.2783×104ft3

Substitute 1.2783×104ft3 for V3, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (VIII).

m3=(490lb/ft332.2ft/s2)(1.2783×104ft3)=(15.217lbs2/ft4)(1.2783×104ft3)=1.945×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (XI).

V4=(π4(18in)2)(18in)=(0.01227in2)(18in)=(0.22086in3)(1ft12in)(1ft12in)(1ft12in)=1.2783×104ft3

Substitute 1.2783×104ft3 for V4, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (X).

m4=(490lb/ft332.2ft/s2)(1.2783×104ft3)=(15.217lbs2/ft4)(1.2783×104ft3)=1.945×103lbs2/ft

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XIII).

(Ix)1=12(6.1112×103lbs2/ft)(18in)2=12(6.1112×103lbs2/ft){(18in)(1ft12in)}2=12(6.1112×103lbs2/ft)(2.25ft2)=6.8751×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XIV).

(Ix)2=12(6.1112×103lbs2/ft)(18in)2+(6.1112×103lbs2/ft)(18in)2=[12(6.1112×103lbs2/ft){(18in)(1ft12in)}2+(6.1112×103lbs2/ft){(18in)(1ft12in)}2]=(6.8751×103fts2)+(13.7502×103fts2)=20.6252×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XV).

(Ix)3=[112(1.945×103lbs2/ft)(18in)2+(1.945×103lbs2/ft){(18in2)2+(18in)2}]=[112(1.945×103lbs2/ft){(18in)(1ft12in)}2+(1.945×103lbs2/ft)[{(18in2)(1ft12in)}2+{(18in)(1ft12in)}2]]=(0.3647×103lbfts2)+(5.4712×103lbfts2)=5.8359×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XVI).

(Ix)4=[112(1.945×103lbs2/ft)(18in)2+(1.945×103lbs2/ft){(18in2)2+(18in)2}]=[112(1.945×103lbs2/ft){(18in)(1ft12in)}2+(1.945×103lbs2/ft)[{(18in2)(1ft12in)}2+{(18in)(1ft12in)}2]]=(0.3647×103lbfts2)+(5.4712×103lbfts2)=5.8359×103lbfts2

Substitute 6.8751×103lbfts2 for (Ix)1, 20.6252×103lbfts2 for (Ix)2, 5.8359×103lbfts2 for (Ix)3 and 5.8359×103lbfts2 for (Ix)4 in Equation (XII).

Ix=[(6.8751×103lbfts2)+(20.6252×103lbfts2)+(5.8359×103lbfts2)+(5.8359×103lbfts2)]=(27.5003×103lbfts2)+(11.6718×103lbfts2)=39.1721×103lbfts2

Thus, the mass moment of inertia of the wire with respect to x axis is 39.1721×103lbfts2

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XVIII).

(Iy)1=(6.1112×103lbs2/ft)(18in)2=(6.1112×103lbs2/ft){(18in)(1ft12in)}2=(6.1112×103lbs2/ft)(2.25ft2)=13.7502×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XIX).

(Iy)2=(6.1112×103lbs2/ft)(18in)2=(6.1112×103lbs2/ft){(18in)(1ft12in)}2=(6.1112×103lbs2/ft)(2.25ft2)=13.7502×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XX).

(Iy)3=(1.945×103lbs2/ft)(18in)2=(1.945×103lbs2/ft){(18in)(1ft12in)}2=4.3769×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XXI).

(Iy)4=(1.945×103lbs2/ft)(18in)2=(1.945×103lbs2/ft){(18in)(1ft12in)}2=4.3769×103lbfts2

Substitute 13.7502×103lbfts2 for (Iy)1, 13.7502×103lbfts2 for (Iy)2, 4.3769×103lbfts2 for (Ix)3 and 4.3769×103lbfts2 for (Ix)4 in Equation (XVII).

Iy=[(13.7502×103lbfts2)+(13.7502×103lbfts2)+(4.3769×103lbfts2)+(4.3769×103lbfts2)]=(27.5004×103lbfts2)+(8.7538×103lbfts2)=36.2542×103lbfts2

Thus, the mass moment of inertia of the wire with respect to y axis is 36.2542×103lbfts2.

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XXIII).

(Iz)1=12(6.1112×103lbs2/ft)(18in)2=12(6.1112×103lbs2/ft){(18in)(1ft12in)}2=12(6.1112×103lbs2/ft)(2.25ft2)=6.8751×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XXIV).

(Iz)2=12(6.1112×103lbs2/ft)(18in)2+(6.1112×103lbs2/ft)(18in)2=[12(6.1112×103lbs2/ft){(18in)(1ft12in)}2+(6.1112×103lbs2/ft){(18in)(1ft12in)}2]=(6.8751×103fts2)+(13.7502×103fts2)=20.6252×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XXV).

(Iz)3=13(1.945×103lbs2/ft)(18in)2=13(1.945×103lbs2/ft){(18in)(1ft12in)}2=1.4590×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XXVI).

(Iz)4=13(1.945×103lbs2/ft)(18in)2=13(1.945×103lbs2/ft){(18in)(1ft12in)}2=1.4590×103lbfts2

Substitute 6.8751×103lbfts2 for (Iz)1, 20.6252×103lbfts2 for (Iz)2, 1.4590×103lbfts2 for (Iz)3 and 1.4590×103lbfts2 for (Iz)4 in Equation (XXII).

Iz=[(6.8751×103lbfts2)+(20.6252×103lbfts2)+(1.4590×103lbfts2)+(1.4590×103lbfts2)]=(27.5003×103lbfts2)+(3.098×103lbfts2)=30.5983×103lbfts2

Thus, the mass moment of inertia of the wire with respect to z axis is 30.5983×103lbfts2

Conclusion:

The mass moment of inertia of the wire with respect to x axis is 39.1721×103lbfts2.

The mass moment of inertia of the wire with respect to y axis is 36.2542×103lbfts2.

The mass moment of inertia of the wire with respect to z axis is 30.5983×103lbfts2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three cables are pulling on a ring located at the origin, as shown in the diagram below.  FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°.  FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°.  Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N.  Specify the direction of FC using its coordinate direction angles.
turbomachienery
auto controls

Chapter B Solutions

Vector Mechanics For Engineers

Ch. B - Prob. B.11PCh. B - Prob. B.12PCh. B - Determine by direct integration the mass moment of...Ch. B - Prob. B.14PCh. B - A thin, rectangular plate with a mass m is welded...Ch. B - A thin steel wire is bent into the shape shown....Ch. B - Prob. B.17PCh. B - Prob. B.18PCh. B - Prob. B.19PCh. B - Prob. B.20PCh. B - Prob. B.21PCh. B - Prob. B.22PCh. B - Prob. B.23PCh. B - Prob. B.24PCh. B - Prob. B.25PCh. B - Prob. B.26PCh. B - Prob. B.27PCh. B - Prob. B.28PCh. B - Prob. B.29PCh. B - Prob. B.30PCh. B - Prob. B.31PCh. B - Determine the mass moments of inertia and the...Ch. B - Prob. B.33PCh. B - Prob. B.34PCh. B - Prob. B.35PCh. B - Prob. B.36PCh. B - Prob. B.37PCh. B - Prob. B.38PCh. B - Prob. B.39PCh. B - Prob. B.40PCh. B - Prob. B.41PCh. B - Prob. B.42PCh. B - Prob. B.43PCh. B - Prob. B.44PCh. B - A section of sheet steel 2 mm thick is cut and...Ch. B - Prob. B.46PCh. B - Prob. B.47PCh. B - Prob. B.48PCh. B - Prob. B.49PCh. B - Prob. B.50PCh. B - Prob. B.51PCh. B - Prob. B.52PCh. B - Prob. B.53PCh. B - Prob. B.54PCh. B - Prob. B.55PCh. B - Determine the mass moment ofinertia of the steel...Ch. B - Prob. B.57PCh. B - Prob. B.58PCh. B - Determine the mass moment of inertia of the...Ch. B - Prob. B.60PCh. B - Prob. B.61PCh. B - Prob. B.62PCh. B - Prob. B.63PCh. B - Prob. B.64PCh. B - Prob. B.65PCh. B - Prob. B.66PCh. B - Prob. B.67PCh. B - Prob. B.68PCh. B - Prob. B.69PCh. B - Prob. B.70PCh. B - For the component described in the problem...Ch. B - Prob. B.72PCh. B - For the component described in the problem...Ch. B - Prob. B.74P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY