
Concept explainers
(a)
The principal mass moment of inertia at the origin

Answer to Problem B.72P
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
Explanation of Solution
Given information:
The thin bent plate with uniform density, the weight of both the plates is
The figure below illustrate different centroidal axis.
Figure-(1)
Write the expression for the mass of plate 1.
Here, the weight of both the plates is
Write the expression for the mass of plate 2.
Here, the weight of both the plates is
Write the expression of position vector of the line joining
Here, the vector along the line joining the points
Write the expression for the magnitude of position vector
Here, the magnitude of the position vector
Write the expression for unit vector along
Here, the unit vector along
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
From, the symmetry in above figure about
Here, the product mass moment of inertia in
From, the symmetry in above figure about
Write the expression for product of mass moment of inertia in
Here, the product mass moment of inertia is
Write the expression for product mass moment of inertia in
Here, the product mass moment of inertia is
Write the expression for product mass moment of inertia in
Here, the product mass moment of inertia in
Write the expression of principal mass moment of inertia
Here, the principal moment of inertia is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Solving above cubic Equation to get the values of
Conclusion:
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
(b)
The determine the orientation of principal axis at origin

Answer to Problem B.72P
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
Explanation of Solution
The figure below represents the orientation of principal axis with respect to the Cartesian coordinates.
Figure-(1)
Write the equation of direction cosines formed by principal axes 1.
Here, the principal mass moment of inertia about principal axis 1 is
Write the expression of orientation of direction cosine about principal axis 1 in
Here, the orientation of direction cosine about principal axis 1 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 1 in
Write the expression of orientation of direction cosine about principal axis 1 in
Here, the orientation of direction cosine about principal axis 1 in
Write the equation of direction cosines formed by principal axes 2.
Here, the principal mass moment of inertia about principal axis in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 is
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 in
Write the equation of direction cosines formed by principal axes 3.
Here, the principal mass moment of inertia about principal axis 3 is
Write the expression of orientation of direction cosine about principal axis 3 in
Here, the orientation of direction cosine about principal axis 3 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 3 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 3 in
Calculation:
Substitute
Substitute
Add Equation (XXXIX) and (XL).
Subtract Equation (XXXIX) and (XL).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Add Equation (XLIV) and(XLV).
Subtract Equation (XLIV) and(XLV).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Add Equation (XLIX) and (L).
Substract Equation (XLIX) and (L).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
Want to see more full solutions like this?
Chapter B Solutions
Vector Mechanics For Engineers
- find the laplace transform for the flowing function 2(1-e) Ans. F(s)=- S 12) k 0 Ans. F(s)= k s(1+e) 0 a 2a 3a 4a 13) 2+ Ans. F(s)= 1 s(1+e") 3 14) f(t)=1, 0arrow_forwardFind the solution of the following Differential Equations Using Laplace Transforms 1) 4y+2y=0. y(0)=2. y'(0)=0. 2) y+w²y=0, (0)=A, y'(0)=B. 3) +2y-8y 0. y(0)=1. y'(0)-8. 4)-2-3y=0, y(0)=1. y'(0)=7. 5) y-ky'=0, y(0)=2, y'(0)=k. 6) y+ky'-2k²y=0, y(0)=2, y'(0) = 2k. 7) '+4y=0, y(0)=2.8 8) y+y=17 sin(21), y(0)=-1. 9) y-y-6y=0, y(0)=6, y'(0)=13. 10) y=0. y(0)=4, y' (0)=0. 11) -4y+4y-0, y(0)=2.1. y'(0)=3.9 12) y+2y'+2y=0, y(0)=1, y'(0)=-3. 13) +7y+12y=21e". y(0)=3.5. y'(0)=-10. 14) "+9y=10e". y(0)=0, y'(0)=0. 15) +3y+2.25y=91' +64. y(0)=1. y'(0) = 31.5 16) -6y+5y-29 cos(2t). y(0)=3.2, y'(0)=6.2 17) y+2y+2y=0, y(0)=0. y'(0)=1. 18) y+2y+17y=0, y(0)=0. y'(0)=12. 19) y"-4y+5y=0, y(0)=1, y'(0)=2. 20) 9y-6y+y=0, (0)-3, y'(0)=1. 21) -2y+10y=0, y(0)=3, y'(0)=3. 22) 4y-4y+37y=0, y(0)=3. y'(0)=1.5 23) 4y-8y+5y=0, y(0)=0, y'(0)=1. 24) ++1.25y-0, y(0)=1, y'(0)=-0.5 25) y 2 cos(r). y(0)=2. y'(0) = 0. 26) -4y+3y-0, y(0)=3, y(0) 7. 27) y+2y+y=e y(0)=0. y'(0)=0. 28) y+2y-3y=10sinh(27), y(0)=0. y'(0)=4. 29)…arrow_forwardAuto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardThe 120 kg wheel has a radius of gyration of 0.7 m. A force P with a magnitude of 50 N is applied at the edge of the wheel as seen in the diagram. The coefficient of static friction is 0.3, and the coefficient of kinetic friction is 0.25. Find the acceleration and angular acceleration of the wheel.arrow_forwardAuto Controls Using MATLAB , find the magnitude and phase plot of the compensators NO COPIED SOLUTIONSarrow_forward4-81 The corner shown in Figure P4-81 is initially uniform at 300°C and then suddenly exposed to a convection environment at 50°C with h 60 W/m². °C. Assume the = 2 solid has the properties of fireclay brick. Examine nodes 1, 2, 3, 4, and 5 and deter- mine the maximum time increment which may be used for a transient numerical calculation. Figure P4-81 1 2 3 4 1 cm 5 6 1 cm 2 cm h, T + 2 cmarrow_forwardAuto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardAuto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward-400" 150" in Datum 80" 90" -280"arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





