Concept explainers
Determine the mass moment ofinertia of the steel fixture of Probs. B.35 and B.39 with respect to the axis through the origin that forms equal angles with the x, y, and z axes.
The mass moment of the inertia of the steel fixture passes through the origin.
Answer to Problem B.56P
The mass moment of the inertia of the steel fixture passes through the origin is
Explanation of Solution
Given information:
Given information:
The density of the steel is
The following figure represents the given system.
Figure-(1)
Write the expression for the mass of component 1.
Here, the mass of component 1 is
Write the expression for the volume of the component 1.
Here, the sides of the component is
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the mass of component 2.
Here, the mass of component 2 is
Write the expression for volume of the component 2.
Here, the sides of the component is
Write the expression for the mass of component 3.
Here, the mass of component 3 is
Write the expression for volume of the component 3.
Here, the diameter of the circle is
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the position vector of
Write the expression for the magnitude of the position vector
Write the expression for the unit vector.
Write the expression for the mass moment of the inertia of the steel fixture passes through the origin.
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
From Equation (LI) the unit vector along the different axis.
Substitute
Conclusion:
The mass moment of the inertia of the steel fixture passes through the origin is
Want to see more full solutions like this?
Chapter B Solutions
Vector Mechanics For Engineers
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q2: For the following figure, find the reactions of the system. The specific weight of the plate is 500 lb/ft³arrow_forwardQ1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forward
- Help ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward
- (L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forwardIf L-719.01 mm, = 7839.63 N/m³, the normal stress σ caused by self-weight at the location of the maximum normal stress in the bar can be calculated as (Please select the correct value of σ given in Pa and rounded to three decimal places.) Select one: ○ 1. 1409.193 2. 845.516 O 3. 11273.545 ○ 4.8455.159 ○ 5.4509.418 6. 2818.386 7.5636.772arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L