
a)
Interpretation:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of phenylacetylene is to be drawn.
Concept introduction:
In the first step attack of the π electrons of the triple bond on the electrophilic Hg2+ ion takes place to yield a mercury containing vinylic carbocation intermediate. In the second step nucleophilic attack of water takes place on the carbocation. A new C-O bond is formed leading to the formation of a protonated mercury containing enol. In the third step water abstracts a proton from the protonated enol to yield the organomercury intermediate.
To draw:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of ethynylbenzene.
b)
Interpretation:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of propyne is to be drawn.
Concept introduction:
In the first step attack of the π electrons of the triple bond on the electrophilic Hg2+ ion takes place to yield a mercury containing vinylic carbocation intermediate. In the second step nucleophilic attack of water takes place on the carbocation. A new C-O bond is formed leading to the formation of a protonated mercury containing enol. In the third step water abstracts a proton from the protonated enol to yield the organomercury intermediate.
To draw:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of propyne.
c)
Interpretation:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of 3-methyl-1-butyne is to be drawn.
Concept introduction:
In the first step attack of the π electrons of the triple bond on the electrophilic Hg2+ ion takes place to yield a mercury containing vinylic carbocation intermediate. In the second step nucleophilic attack of water takes place on the carbocation. A new C-O bond is formed leading to the formation of a protonated mercury containing enol. In the third step water abstracts a proton from the protonated enol to yield the organomercury intermediate.
To draw:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of 3-methyl-1-butyne.

Trending nowThis is a popular solution!

Chapter 9 Solutions
OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card for McMurry's Organic Chemistry, 9th
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning


