The reaction
Answer to Problem 152P
The reaction
The reaction
The reaction
Explanation of Solution
Calculation:
Let, choose reaction
Show the free body diagram of the beam in below Figure 1.
Calculate the vertical reaction
Calculate the vertical reaction
Show the free body diagram of the beam in below Figure 2.
Calculate the vertical reaction
Calculate the vertical reaction
Calculate the moment
Calculate the
Substitute
Show the
Calculate the area
Substitute
Calculate the area
Substitute
Calculate the moment
Substitute
Calculate the
Substitute
Show the
Calculate the area
Substitute
Calculate the moment
Calculate the
Substitute
Show the
Calculate the area
Substitute
Calculate the area
Substitute
Calculate the tangential deviation of A with respect to B using the relation:
Substitute
Calculate the tangential deviation of C with respect to A using the relation:
Substitute
Express the deflection
Express the deflection
Substitute
Calculate the reaction
Substitute
Calculate the reaction
Substitute
Calculate the reaction
Substitute
Thus, the reaction
Thus, the reaction
Thus, the reaction
Want to see more full solutions like this?
Chapter 9 Solutions
EBK MECHANICS OF MATERIALS
- Parrow_forwardPROBLEM 9.11 Mg (a) Determine the location and magnitude of the maximum deflection of * beam AB. (b) Assuming that beam AB is a W360 x 64, L = 3.5 m, and E = 200 GPa, calculate the maximum allowable value of the applied moment M, if the maximum deflection is not to exceed 1 mm. B = 45.3 kN · marrow_forwardHW6.6. Cantilevered Beam with several Loadings For the steel cantilevered beam shown, determine the minimum moment of inertia of the structural tee section, Imin, if the deflection at the free end is limited to 1.15 in. Given: • L = 19.2 ft • L₂ = 6 ft • F = 1235 lb • q = 1.1 kip/ft Imin = +4₂ + 1779 - 4/1/2 number (rtol=0.01, atol=1e-05) F L in 4 +4₂ + qarrow_forward
- 7.52 Determine the reactions on the beam at A and B. 2 kN/m A -4 m- B Problem 7.52 -2 m 3 kN/marrow_forward9.11 For the cantilever beam shown, determine the slope and deflection at (a) point B, (b) point C. Use E = 29 × 106 psi. w = 600 lb/ft A -6 ft- Fig. P9.11 B 1200 lb --+-3A- H W 8x 15arrow_forwardPROBLEM 9.11 Mo (a) Determine the location and magnitude of the maximum deflection of beam AB. (b) Assuming that beam AB is a W360 x 64, L = 3.5 m, and E = 200 GPa, calculate the maximum allowable value of the applied moment Mo if the maximum deflection is not to excecd I mm. Mo = 45.3 kN · m %3Darrow_forward
- Hi kindly help me nowarrow_forwardDetermine the slope and deflection at D for the beam and loading shown (Fig. 8.33), knowing that the flexural rigidity of the beam is EI = 100 MN m². A 150 kN 2 m D Fig. 8.33 20 kN/m -8 m- Barrow_forwardQ.4) Determine the deflection of the beam at point C. 7.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY