Concept explainers
Use the method of superposition to solve the following problems and assume that the flexural rigidity El of each beam is constant.
9.69 through 9.72 For the beam and loading shown, determine (a) the deflection at point C, (b) the slope at end A.
Fig. P9.69
(a)
Find the deflection at point C of the beam using superposition method.
Answer to Problem 69P
The deflection at point C of the beam is
Explanation of Solution
The flexural rigidity of the beam is EI.
Show the free-body diagram of the superimposed beam as in Figure 1.
Loading I:
The downward load P is acting at point B of the beam.
Refer to case 5 in Appendix D “Beam Deflections and Slopes” in the textbook.
Write the deflection equation for concentrated load acting at any point in the simply supported beam.
Consider
When
Find the deflection at point C due to point load P at point B of the beam as follows;
Loading II:
The downward point load P is acting at point C.
Refer to case 4 in Appendix D “Beam Deflections and Slopes” in the textbook.
Write the deflection equation for concentrated load acting at mid-point in the simply supported beam.
Consider
Find the deflection at point C due to load P at point C as follows;
Loading III:
The downward load P is acting at point D of the beam.
Refer to case 5 in Appendix D “Beam Deflections and Slopes” in the textbook.
Write the deflection equation for concentrated load acting at any point in the simply supported beam.
Consider
Find the deflection at point C due to point load P at point D of the beam as follows;
Apply the superimposition concept.
Find the deflection at point C
Substitute
Therefore, the deflection at point C of the beam is
(b)
Find the slope at point A of the beam using superposition method.
Answer to Problem 69P
The slope at point A of the beam is
Explanation of Solution
The flexural rigidity of the beam is EI.
Refer to Figure (1) in Part (a);
Loading I:
The downward load P is acting at point B of the beam.
Refer to case 5 in Appendix D “Beam Deflections and Slopes” in the textbook.
Write the slope equation for concentrated load acting at any point in the simply supported beam.
Consider
Find the slope at point A due to point load P at point B of the beam as follows;
Loading II:
The downward point load P is acting at point C.
Refer to case 4 in Appendix D “Beam Deflections and Slopes” in the textbook.
Write the slope equation for concentrated load acting at mid-point in the simply supported beam.
Consider
Find the slope at point A due to load P at point C is;
Loading III:
The downward load P is acting at point D of the beam.
Refer to case 5 in Appendix D “Beam Deflections and Slopes” in the textbook.
Write the slope equation for concentrated load acting at any point in the simply supported beam.
Consider
Find the slope at point A due to point load P at point D of the beam is;
Apply the superimposition concept.
Find the slope at point A
Substitute
Therefore, the slope at point A of the beam is
Want to see more full solutions like this?
Chapter 9 Solutions
EBK MECHANICS OF MATERIALS
- A piston-cylinder device contains 0.87 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Use data from the tables. R-134a -10°C Determine the change in the volume of the cylinder of the refrigerant-134a if the specific volume and enthalpy of R-134a at the initial state of 90.4 kPa and -10°C and at the final state of 90.4 kPa and 15°C are as follows: = 0.2418 m³/kg, h₁ = 247.77 kJ/kg 3 v2 = 0.2670 m³/kg, and h₂ = 268.18 kJ/kg The change in the volume of the cylinder is marrow_forwardA piston-cylinder device contains 0.87 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Use data from the tables. R-134a -10°C Determine the final pressure of the refrigerant-134a. The final pressure is kPa.arrow_forwardThe hydraulic cylinder BC exerts on member AB a force P directed along line BC. The force P must have a 560-N component perpendicular to member AB. A M 45° 30° C Determine the force component along line AB. The force component along line AB is N.arrow_forward
- ! Required information A telephone cable is clamped at A to the pole AB. The tension in the left-hand portion of the cable is given to be T₁ = 815 lb. A 15° 25° B T₂ Using trigonometry, determine the required tension T₂ in the right-hand portion if the resultant R of the forces exerted by the cable at A is to be vertical. The required tension is lb.arrow_forwardWhat are examples of at least three (3) applications of tolerance fitting analysis.arrow_forwardThe primary material used in the production of glass products is silica sand. True or Falsearrow_forward
- Which one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forwardA pattern for a product is larger than the actual finished part. True or Falsearrow_forwardIn the lost foam process, the pattern doesn’t need to be removed from the mold. True or Falsearrow_forward
- Tempering eliminates internal stresses in glass. True or Falsearrow_forwardThermoset polymers can be recycled with little to no degradation in properties. True or Falsearrow_forwardTwo forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY