THERMODYNAMICS LLF W/ CONNECT ACCESS
9th Edition
ISBN: 9781264446889
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.12, Problem 62P
The compression ratio of an ideal dual cycle is 14. Air is at 100 kPa and 300 K at the beginning of the compression process and at 2200 K at the end of the heat-addition process. Heat transfer to air takes place partly at constant volume and partly at constant pressure, and it amounts to 1520.4 kJ/kg. Assuming variable specific heats for air, determine (a) the fraction of heat transferred at constant volume and (b) the thermal efficiency of the cycle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An Otto cycle uses air as its working fluid. The compression ratio of the cycle is 10.
1,800 kJ/kg of heat is added during the heat addition process. If the temperature and
pressure at the end of compression are 444C and 2,168Kpa. Assume constant specific
heats for the analysis, determine (a) the temperature and pressure at the end of each
process, (b) the thermal efficiency of the process (c) the net Work of the cycle
(d)mean effective pressure of the cycle.
Consider an air-standard Carnot cycle in which the overall ideal thermal efficiency is 75% and the heat supplied is 50 kJ/kg. The pressure and specific volume at the end of isothermal expansion process is 600kPa and 0.5m3/kg, respectively. Determine (a) the maximum and minimum temperature of the cycle in K, (b) the specific volume, in m3/kg and the pressure, in kPa at the beginning of heat addition process, and (c) the net work developed in kJ/kg. Show the P-V and T-s diagram.
A power cycle operates between two thermal reservoirs at 300 K and 800 K. The working fluid of the cycle is air, which can be considered to be an ideal gas. Specific heats are not assumed to be constant. An inventor claims that for a heat input of 250 kJ, the net work from the cycle is 80 kJ. The work generating component in the cycle is a reversible, steady state turbine. The inlet pressure and temperature are 1000 kPa and 600 K and the exit temperature is 550 K. The turbine receives 150 kJ/kg of heat from the high temperature reservoir and loses 10 kJ/kg of heat to the ambient at 298 K. (a) Prove whether or not the overall cycle is possible using second law arguments. (b) determine the work done by the turbine [kJ/kg]
Chapter 9 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
Ch. 9.12 - What are the air-standard assumptions?Ch. 9.12 - What is the difference between air-standard...Ch. 9.12 - Prob. 3PCh. 9.12 - How does the thermal efficiency of an ideal cycle,...Ch. 9.12 - How are the combustion and exhaust processes...Ch. 9.12 - What does the area enclosed by the cycle represent...Ch. 9.12 - Prob. 7PCh. 9.12 - Can the mean effective pressure of an automobile...Ch. 9.12 - What is the difference between spark-ignition and...Ch. 9.12 - Prob. 10P
Ch. 9.12 - Prob. 11PCh. 9.12 - Can any ideal gas power cycle have a thermal...Ch. 9.12 - Prob. 13PCh. 9.12 - Prob. 14PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Prob. 19PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - The thermal energy reservoirs of an ideal gas...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Determine the mean effective pressure of an ideal...Ch. 9.12 - Reconsider Prob. 932E. Determine the rate of heat...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 36PCh. 9.12 - A spark-ignition engine has a compression ratio of...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 7....Ch. 9.12 - Prob. 39PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Someone has suggested that the air-standard Otto...Ch. 9.12 - Repeat Prob. 942 when isentropic processes are...Ch. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Prob. 55PCh. 9.12 - Prob. 56PCh. 9.12 - Prob. 57PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 60PCh. 9.12 - Prob. 61PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Prob. 67PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 69PCh. 9.12 - Prob. 70PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 75PCh. 9.12 - Prob. 76PCh. 9.12 - Prob. 77PCh. 9.12 - Prob. 78PCh. 9.12 - Prob. 79PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A stationary gas-turbine power plant operates on a...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 87PCh. 9.12 - Prob. 88PCh. 9.12 - Repeat Prob. 988 when the isentropic efficiency of...Ch. 9.12 - Repeat Prob. 988 when the isentropic efficiency of...Ch. 9.12 - Repeat Prob. 988 when the isentropic efficiencies...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - Repeat Prob. 993 for a pressure ratio of 15.Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - A simple ideal Brayton cycle uses argon as the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - A gas-turbine power plant operating on the simple...Ch. 9.12 - Prob. 99PCh. 9.12 - Prob. 100PCh. 9.12 - Prob. 101PCh. 9.12 - Prob. 102PCh. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - A gas turbine for an automobile is designed with a...Ch. 9.12 - Rework Prob. 9105 when the compressor isentropic...Ch. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 109PCh. 9.12 - Prob. 111PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - Prob. 116PCh. 9.12 - Prob. 117PCh. 9.12 - Prob. 118PCh. 9.12 - Prob. 119PCh. 9.12 - Prob. 120PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - A gas turbine operates with a regenerator and two...Ch. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - Prob. 130PCh. 9.12 - Prob. 131PCh. 9.12 - Air at 7C enters a turbojet engine at a rate of 16...Ch. 9.12 - Prob. 133PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 137PCh. 9.12 - Prob. 138PCh. 9.12 - Reconsider Prob. 9138E. How much change would...Ch. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - An air-standard Diesel cycle has a compression...Ch. 9.12 - Prob. 144PCh. 9.12 - Prob. 145PCh. 9.12 - Prob. 146PCh. 9.12 - Prob. 147PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 150PCh. 9.12 - A gas turbine operates with a regenerator and two...Ch. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 153PCh. 9.12 - An air-standard cycle with variable specific heats...Ch. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 158RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 160RPCh. 9.12 - Prob. 161RPCh. 9.12 - Consider an engine operating on the ideal Diesel...Ch. 9.12 - Repeat Prob. 9162 using argon as the working...Ch. 9.12 - Prob. 164RPCh. 9.12 - Prob. 165RPCh. 9.12 - Prob. 166RPCh. 9.12 - Prob. 167RPCh. 9.12 - Consider an ideal Stirling cycle using air as the...Ch. 9.12 - Prob. 169RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 171RPCh. 9.12 - A Brayton cycle with a pressure ratio of 15...Ch. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 176RPCh. 9.12 - Prob. 177RPCh. 9.12 - Prob. 180RPCh. 9.12 - Prob. 181RPCh. 9.12 - Prob. 182RPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - A Carnot cycle operates between the temperature...Ch. 9.12 - Prob. 194FEPCh. 9.12 - Prob. 195FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 197FEPCh. 9.12 - Prob. 198FEPCh. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The compression ratio of an air-standard dual cycle is 10:1, it begins at 120 kPa and 300 K, and the total heat intake of the cycle has a value of 275 kJ/kg. If this heat intake at constant volume is three-fifth of the total, determine the following: V1, P2, V2, T2, T3, P3, T4, V4, T5, heat rejected, net work, volume displacement and mean effective pressure.arrow_forward4. An ideal Brayton cycle is used in a gas-turbine power plant with two stages of expansion and two stages of compression. Air enters each stage of the compressor and turbine at 17°C and 1067 °C, respectively. If the overall pressure ratio is 9.5, determine the mass flow rate of the cycle to produce 120 MW of electricity. Consider the variation of specific heat with temperature. O a. 527.8 kg/s O b. 291.5 kg/s O c. 160.1 kg/s. O d. 227.4 kg/s O e. 541.4 kg/sarrow_forwardPlease explainarrow_forward
- Thermodynamicsarrow_forwardAn air-standard cycle is executed in a closed system and is composed of the following four processes: 1-2 Isentropic compression from 100 kPa and 27°C to 1 MPa 2-3 P = constant heat addition in amount of 2800 kJ/kg 3-4 V = constant heat rejection to 100 kPa P = constant heat rejection to initial state (a) Show the cycle on P-v and T-s diagrams. (b) Calculate the maximum temperature in the cycle. (c) Determine the thermal efficiency. Assume constant specific heats at room temperature.arrow_forward2nd-Law Analysis of Otto Cycles Consider an engine operating on the ideal Otto cycle with a compression ratio of 8. At the beginning of the compression process, air is at 100 kPa and 17°C. During the constant-volume heat-addition process, 800 kJ/kg of heat is transferred to air from a source at 1700 K and waste heat is rejected to the surroundings at 290 K. Accounting for the variation of specific heats of air with temperature, determine (a) the exergy destruction associated with each of the four processes and the cycle and (b) the second-law efficiency of this cycle. P. kPa Isentropic in Jout Isentropic 100 38 V = V = V = V4arrow_forward
- Consider a two stage compression and two stage expansion in an ideal gas-turbine cycle. The air enters each stage of the compressor at 350 K and each stage of the turbine at 1240 K. The pressure ratio across each stage of the compressor and turbine is 3.5. Assuming an efficiency of 82 percent for each compressor stage and an efficiency of 88 percent for each turbine stage. Determine the thermal efficiency of the cycle, assuming (a) no regenerator is used and (b) a regenerator with 85 percent effectiveness is used.arrow_forwardAn air-standard Otto cycle uses 0.1 kg of air and has a clearance of 17%. The intake conditions are 98 kPa and 37°C, and the energy release during combustion is 1,600 kJ per kg.Determine the Piston Displacement Volume in Cubic Centimeters.arrow_forwardIn an ideal Otto cycle, the ratio of the maximum volume to the minimum volume is 8. The maximum temperature of the cycle is 1,290 K while the minimum temperature is 301 K. Determine the work net in kJ/kg. Use k = 1.4, Cv = 0.718 kJ/kg-K and Cp = 1.005 kJ/kg-K. For the final answer, use two decimal places.arrow_forward
- Consider a Stirling cycle of standard air that operates with a maximum pressure of 600 psia and a minimum of 10 psia, it is known that the maximum volume of air is 10 times the minimum and that the temperature during the heat rejection process is 100 F. are considered constant specific heats. Using the above information, calculate the following:✓ The addition of heat✓ Heat rejection✓ Net work/kg✓ Amount of heat that can be regenerated in Btu/lbmarrow_forwardFor a specified compression ratio, is a diesel or gasoline engine more efficient?arrow_forwardA cold-air standard diesel cycle has a cut-off ratio of 2.4. The temperature and pressure at the end of the expansion process are 48 psia and 1830 R, respectively. Each cycle rejects 346 Btu of heat. If the pressure and volume at the beginning of the heat addition process are 700 psia and 1.0 ft3, determine the (a) heat added per cycle, in Btu (b) net work, in Btu (c) maximum temperature in the cycle, in R (d) thermal efficiency, in % (e) mean effective pressure, in psia, and (f) the compression ratio. Use ??= 0.718 kJ/kg-K, ??= 1.005 kJ/kg-K and ?= 1.4.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY