Concept explainers
(a)
The maximum temperature in the cycle.
(a)
Answer to Problem 153P
The maximum temperature in the cycle is
Explanation of Solution
Draw the
Refer to Table A-2b, obtain the properties of air at 1000 K.
Express the compression ratio.
Here, clearance volume is
Express the total volume of the engine at the beginning of compression process (state 1).
Process 1-2: Isentropic compression
Calculate the temperature at state 2.
Here, temperature at state 1 is
Calculate the pressure at state 2.
Here, pressure at state 1 is
Process 2-x and x-3: Constant-volume and constant pressure heat addition processes
Calculate the temperature at x state.
Here, pressure at x state is
Calculate the heat addition to the process 2-x.
Here, constant volume specific heat is
Calculate the heat addition to the process x-3.
Here, constant pressure specific heat is
Conclusion:
Substitute 16 for r and 1.8 L for
The value of
Substitute
Substitute 343 K for
Substitute 95 kPa for
Substitute 3859 kPa for
Substitute
Substitute
Thus, the maximum temperature in the cycle is
(b)
The net work output.
The thermal efficiency.
(b)
Answer to Problem 153P
The net work output is
The thermal efficiency is
Explanation of Solution
Express the total heat addition to the process.
Calculate the volume at state 3.
Here, volume at state x is
Process 3-4: Isentropic expansion
Calculate the temperature at state 4.
Here, volume at state 3 and 4 are
Calculate the pressure at state 4.
Here, pressure at state 3 and 4 are
Process 4-1: Constant volume heat rejection
Calculate the heat rejection.
Calculate the net work output.
Calculate the thermal efficiency.
Conclusion:
Substitute 702.6 kJ/kg for
Substitute
Substitute 2308 K for
Substitute 7500 kPa for
Substitute
Substitute 569.3 kJ/kg for
Thus, the net work output is
Substitute 835.8 kJ/kg for
Thus, the thermal efficiency is
(c)
The mean effective pressure.
(c)
Answer to Problem 153P
The mean effective pressure is
Explanation of Solution
Calculate the mass.
Calculate the mean effective pressure.
Conclusion:
Substitute 95 kPa for
Substitute 0.001853 kg for m,
Thus, the mean effective pressure is
(d)
The power for engine speed of 3500 rpm.
(d)
Answer to Problem 153P
The power for engine speed of 3500 rpm is
Explanation of Solution
Calculate the power for engine speed of 3500 rpm.
Here, engine speed is
Conclusion:
Substitute 2200 rev/min for
Thus, the power for engine speed of 3500 rpm is
(e)
The second law efficiency of the cycle.
The rate of exergy output with the exhaust gases.
(e)
Answer to Problem 153P
The second law efficiency of the cycle is
The rate of exergy output with the exhaust gases is
Explanation of Solution
Express the maximum thermal efficiency of the cycle.
Here, dead state temperature is
Express the second law efficiency of the cycle.
Calculate the rate of exergy of the exhaust gases.
Here, specific internal energy at state 4, dead state is
Conclusion:
Substitute
Substitute 0.8709 for
Thus, the second law efficiency of the cycle is
Substitute
Thus, the rate of exergy output with the exhaust gases is
Want to see more full solutions like this?
Chapter 9 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
- The members of a truss are connected to the gusset plate as shown in (Figure 1). The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F= 7.03 Submit ? kN Previous Answers Request Answer × Incorrect; Try Again; 21 attempts remaining ▾ Part B Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. Figure T₂ = 7.03 C T2 |? KN Submit Previous Answers Request Answer × Incorrect; Try Again; 23 attempts remaining Provide Feedbackarrow_forwardConsider the following acid-base reaction: Fe3+(aq) +3H2O -Fe(OH)3 (s) + 3H* ← A. Using thermodynamics, calculate the equilibrium constant K at 25°C (The AG° of formation of Fe(OH)3(s) is -699 kJ/mol). B. Using the value of K you calculated in part a, if a solution contains 10-4 M Fe3+ and has a pH of 7.5, will Fe(OH)3(s) precipitate? Show all calculations necessary to justify your answer. Note that the reaction as written is for precipitation, not dissolution like Ksp-arrow_forwardA vertical force of F = 3.4 kN is applied to the hook at A as shown in. Set d = 1 m. Part A 3 m 3m 0.75 m 1.5 m. Determine the tension in cable AB for equilibrium. Express your answer to three significant figures and include the appropriate units. FAB= Value Submit Request Answer Part B Units ? Determine the tension in cable AC for equilibrium. Express your answer to three significant figures and include the appropriate units. FAC = Value Submit Request Answer Part C ? Units Determine the tension in cable AD for equilibrium. Express your answer to three significant figures and include the appropriate units.arrow_forward
- Consider the heat engine operating at steady state between the two thermal reservoirs shown at the right while producing a net power output of 700 kW. If 1000 kW of heat (Q̇H) is transferred to the heat engine from a thermal reservoir at a temperature of TH = 900 K, and heat is rejected to a thermal reservoir at a temperature of TL = 300 K, is this heat engine possible? Can you answer this question for me and show all of the workarrow_forward1.12 A disk of constant radius r is attached to a telescoping rod that is extending at a constant rate as shown in Fig. P1.12. Both the disk and the rod are rotating at a constant rate. Find the inertial velocity and acceleration of point P at the rim of the disk. ท2 L 0 SS P α e 0 O' êL Fig. P1.12 Rotating disk attached to telescoping rod. 60 LLarrow_forwardTwo different options A and B with brake pads for disc brakes are connected to the rope drum. The diameter of the rope drum is 150 mm. What distance must the pads B be at from the center of rotation to cover the same distance as A?A B- Width 50 mm - Width 60 mm- Evidence center 120mm - Construction power 900 N from rotation center.- Maintains a weight of 200 kgwhen the installation force is 1.4kN (μ is missing from the data)M=μF(Ry-Ri)Right answer R=187 mmarrow_forward
- Assume the xy plane is level ground, and that the vertical pole shown in the diagram lies along the z-axis with its base at the origin. If the pole is 5 m tall, and a rope is used to pull on the top of the pole with a force of 400 N as shown, determine the magnitudes of the parallel and perpendicular components of the force vector with respect to the axis of the post i.e. with respect to the z-axis.arrow_forward4-1 Q4: Q5: (20 Marks) Find √48 using False Position Method with three iterations. Hint: the root lies between 3 and 4. (20 Marks)arrow_forwardDetermine the angle between vectors FA and FB that is less than 180 degrees. FA is the vector drawn from the origin to point A (-4, 4, 2) while FB is the vector drawn from the origin to point B (3, 1, -3).arrow_forward
- Find the resultant force vector from adding F1, F2 and F3, where … F1 = {-8i+10j-32k} N F2 is 40 N in magnitude with coordinate direction angles α, β, and γ, of 45, 120 and 60 degrees, respectively and F3 is 22 N in magnitude with transverse and azimuth angles of 65 and 40 degrees, respectively Express your final answer as a Cartesian vector as well as a magnitude with angles.arrow_forwardA 2-kW resistance heater wire with thermal conductivity of k=20 W/mK, a diameter of D=4mm, and a length of L=0.9m is used to boil water. If the outer surface temp of the resistance wire is Ts=110 degrees C, determine the temp at the center of the wire.arrow_forwardA flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has emmisssivity and an absorptivity of 0.9. The top surface where x=0 temp of the absorber is T0=35 degrees C, and solar radiation is incident on the basorber at 500 W/m^2 with a surrounding temp of 0 degrees C. The convection heat transfer coefficient at the absorber surface is 5 W/m^2 K, while the ambient temp is 25 degrees C. Show that the variation of the temp in the basorber plate can be expressed as T(x)=-(q0/k)x+T0, and determine net heat flux, q, absorbed by solar collector.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY