Repeat Prob. 9–125, assuming an efficiency of 86 percent for each compressor stage and an efficiency of 90 percent for each turbine stage.
a)
The back work ratio and thermal efficiency of the gas-turbine without regenerator.
Answer to Problem 126P
The back work ratio for the ideal gas-turbine cycle without regenerator is
The thermal efficiency of the gas-turbine without regenerator is
Explanation of Solution
Draw the
Write the pressure ratio relation for the process 1-2.
Here, relative pressure at state 1 is
Write the pressure ratio relation for the process 5-6.
Here, pressure at state 6 is
Write the expression to calculate the work input per kg to the compressors
Here, enthalpy at state 2 is
Write the expression to calculate the work done per kg by the turbines
Here, enthalpy at state 5 is
Write the expression to calculate the back work ratio
Write the expression to calculate the heat input for ideal gas-turbine cycle
Here, enthalpy at state 4 is
Write the expression to calculate the net work output per kg by the gas-turbine cycle
Write the expression to calculate the thermal efficiency of the gas-turbine cycle
Write the expression for the efficiency of the compressor
Here, the specific heat at constant pressure is
Write the expression for the efficiency of the turbine
Conclusion:
From Table A-17, “Ideal-gas properties of air”, obtain the following properties at the temperature of
Substitute 3 for
From the Table A-17, “Ideal-gas properties of air”.
Obtain the value of enthalpy on isentropic state
Write the formula of interpolation method of two variables.
Here, the variables denoted by x and y are relative pressure and enthalpy on isentropic state.
Show relative pressure and enthalpy on isentropic state values from the Table A-17.
Relative pressure | Enthalpy |
4.153 | 411.12 |
4.158 | ? |
4.522 | 421.26 |
Substitute
The enthalpy on isentropic state
Substitute
From Table A-17, “Ideal-gas properties of air”, obtain the following properties at the temperature of
Substitute
From the Table A-17, “Ideal-gas properties of air” obtain the values of enthalpy on isentropic states
Substitute
Substitute
Substitute
Substitute
Thus, the back work ratio for the ideal gas-turbine cycle without regenerator is
Substitute
Substitute
Substitute
Thus, the thermal efficiency of the gas-turbine without regenerator is
b)
The thermal efficiency of the gas turbine with regenerator.
Answer to Problem 126P
The thermal efficiency of the gas turbine with regenerator is
Explanation of Solution
Write the expression to calculate the heat used for the regeneration process
Here, the effectiveness of the regenerator is
Write the expression to calculate the new heat input to the gas-turbine cycle
Write the expression to calculate the thermal efficiency of the gas-turbine with regenerator
Conclusion:
Substitute 0.75 for
Substitute
Substitute
Thus, the thermal efficiency of the gas turbine with regenerator is
Want to see more full solutions like this?
Chapter 9 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
- My answers are incorrectarrow_forwardPicturearrow_forwardWhat is the weight of a 5-kg substance in N, kN, kg·m/s², kgf, Ibm-ft/s², and lbf? The weight of a 5-kg substance in N is 49.05 N. The weight of a 5-kg substance in kN is KN. The weight of a 5-kg substance in kg·m/s² is 49.05 kg-m/s². The weight of a 5-kg substance in kgf is 5.0 kgf. The weight of a 5-kg substance in Ibm-ft/s² is 11.02 lbm-ft/s². The weight of a 5-kg substance in lbf is 11.023 lbf.arrow_forward
- Mych CD 36280 kg. 0.36 givens Tesla truck frailer 2017 Model Vven 96154kph ronge 804,5km Cr Powertrain Across PHVAC rwheel 0.006 0.88 9M² 2 2kW 0.55M ng Zg Prated Trated Pair 20 0.95 1080 kW 1760 Nm 1,2 determine the battery energy required to meet the range when fully loaded determine the approximate time for the fully-loaded truck-trailor to accelerate from 0 to 60 mph while Ignoring vehicle load forcesarrow_forward12-217. The block B is sus- pended from a cable that is at- tached to the block at E, wraps around three pulleys, and is tied to the back of a truck. If the truck starts from rest when ID is zero, and moves forward with a constant acceleration of ap = 0.5 m/s², determine the speed of the block at D the instant x = 2 m. Neglect the size of the pulleys in the calcu- lation. When xƊ = 0, yc = 5 m, so that points C and D are at the Prob. 12-217 5 m yc =2M Xparrow_forwardsolve both and show matlab code auto controlsarrow_forward
- 12-82. The roller coaster car trav- els down the helical path at con- stant speed such that the paramet- ric equations that define its posi- tion are x = c sin kt, y = c cos kt, z = h - bt, where c, h, and b are constants. Determine the mag- nitudes of its velocity and accelera- tion. Prob. 12-82 Narrow_forwardGiven: = refueling Powertran SOURCE EMISSIONS vehide eff eff gasoline 266g co₂/kwh- HEV 0.90 0.285 FLgrid 411ilg Co₂/kWh 41111gCo₂/kWh EV 0.85 0.80 Production 11x10% og CO₂ 13.7 x 10°g CO₂ A) Calculate the breakeven pont (in km driven) for a EV against on HEV in Florida of 0.1kWh/kM Use a drive cycle conversion 5) How efficient would the powertrain of the HEV in this example have to be to break even with an EV in Florida after 150,000 Miles of service (240,000) km Is it plausible to achieve the answer from pert b Consideans the HaXINERY theoretical efficiency of the Carnot cycle is 5020 and there are additional losses of the transMISSION :- 90% efficiency ? c A what do you conclude is the leading factor in why EVs are less emissive than ICE,arrow_forwardsolve autocontrolsarrow_forward
- Problem 3.21P: Air at 100F(38C) db,65F(18C) wb, and sea-level pressure is humidified adiabatically with steam. The steam supplied contains 20 percent moisture(quality of 0.80) at 14.7psia(101.3kpa). The air is humidified to 60 percent relative humidity. Find the dry bulb temperature of the humidified air using (a)chart 1a or 1b and (b) the program PSYCH.arrow_forwardPUNTO 4. calculate their DoF using Gruebler's formula. PUNTO 5. Groundarrow_forwardPUNTO 2. PUNTO 3. calculate their DoF using Gruebler's formula. III IAarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY