a)
The velocity of the exhaust gases
a)
Answer to Problem 137P
The velocity of the exhaust gases is
Explanation of Solution
Draw the
Consider, the pressure is
Consider that the aircraft is stationary, and the velocity of air moving towards the aircraft is
Diffuser (For process 1-2):
Write the expression for the energy balance equation for the diffuser.
Here, the energy entering the system is
Write the expression to calculate the temperature and pressure relation for the process 1-2.
Here, the specific heat ratio of air is k.
Compressor (For process 2-3)
Write the expression to calculate the pressure relation using the pressure ratio for the process 2-3.
Here, the pressure ratio is
Write the expression to calculate the temperature and pressure relation for the process 2-3s.
Write the expression for the efficiency of the compressor in the turbojet engine
Here, the specific heat of air at constant pressure is
Turbine (For process 4-5)
Write the expression for the temperature relation for the compressor and turbine.
Write the expression for the efficiency of the turbine in the turbojet engine
Write the expression to calculate the temperature and pressure relation for the process 4-5.
Nozzle (For process 5-6)
Write the expression to calculate the temperature and pressure relation for the isentropic process 4-5.
Write the expression for the energy balance equation for the nozzle.
Conclusion:
From Table A-2a, “Ideal-gas specific heats of various common gases”, obtain the following values of air at room temperature.
The rate of change in the energy of the system
Substitute
Here, the specific heat at constant pressure of air is
Substitute 0 for
Equation (XI).
Substitute 32 kPa for
Substitute 12 for
Substitute 280.0 K for
Substitute 0.80 for
Substitute 1100 K for
Substitute 0.85 for
Substitute 674.2 K for
Substitute 738.1 K for
The rate of change in the energy of the system
Substitute
Substitute 738.1 K for
Hence, the velocity of the exhaust gases is
b)
The propulsive power produced by the turbojet engine
b)
Answer to Problem 137P
The propulsive power produced by the turbojet engine is
Explanation of Solution
Write the expression to calculate the propulsive power produced by the turbojet engine
Here, the mass flow rate of air through the engine is
Conclusion:
Substitute
Hence, the propulsive power produced by the turbojet engine is
c)
The rate of fuel consumption.
c)
Answer to Problem 137P
The rate of fuel consumption is
Explanation of Solution
Write the expression to calculate the heating value of the fuel for the turbojet engine
Write the expression to calculate the mass flow rate of fuel for the turbojet engine
Here, the calorific value of the fuel is HV.
Conclusion:
Substitute
Substitute
Hence, the rate of fuel consumption is
Want to see more full solutions like this?
Chapter 9 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
- auto controlsarrow_forward1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forward
- A lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forwardKnowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forward
- Find the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forwardNo chatgpt plsarrow_forwardSolve for the reaction of all the forces Don't use artificial intelligence or screen shot it, only expert should solvearrow_forward
- No chatgpt plsarrow_forwardA six cylinder petrol engine has a compression ratio of 5:1. The clearance volume of each cylinder is 110CC. It operates on the four-stroke constant volume cycle and the indicated efficiency ratio referred to air standard efficiency is 0.56. At the speed of 2400 rpm. 44000KJ/kg. Determine the consumes 10kg of fuel per hour. The calorific value of fuel average indicated mean effective pressure.arrow_forwardThe members of a truss are connected to the gusset plate as shown in (Figure 1). The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F= 7.03 Submit ? kN Previous Answers Request Answer × Incorrect; Try Again; 21 attempts remaining ▾ Part B Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. Figure T₂ = 7.03 C T2 |? KN Submit Previous Answers Request Answer × Incorrect; Try Again; 23 attempts remaining Provide Feedbackarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY