Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.8.5P
To determine
(a)
Selection of a
To determine
(b)
Number of shear studs required.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1.
The composite beam shown below carries a cantilevered load of 10 kN. The beam consists of one
30 x 124 mm plate and four 12 x 50 mm plates. They are pinned together at 120 mm intervals with
round pins. The pin material has a shear strength of 159 MPa. Compute the minimum acceptable
diameter for the pins.
O
O
O
O
O
O
O
-0
O
0-
O
1000 mm
Do O
-120 mm (typ)
O
O
O
P = 10 KN
30 x 124 mm
12 x 50 mm (typ)
Given the section and plan view of the structural elements (Foundation and Column), estimate the concrete material quantities to be used in construction. There are sixteen (16) - C3F2 in the entire structure. Consider only from the foundation base up to the Natural Ground Level (NGL). The concrete is to have a minimum compressive strength of 3500 psi (24 Mpa).
A reinforced concrete cantilever beam is shown
below. The beam cross section is a rectangle,
12 inches deep by 18 inches wide.
Material properties are:
- Concrete weight: wt = 150 pcf
- Concrete compressive strength: f'c = 4000 psi
- Concrete tensile strength: f't = 400 psi
- Steel tensile strength: fy = 60 ksi
- Stirrup consists of #4 bar
- Beam is not exposed to weather or in contact
with soil.
Determine if the beam will crack under its own weight, if its self-weight is 250lb/ft.
10 ft
-18"
BEAM SECTION
beam will crack
beam will not crack
unknown, not enough information to calculate
Chapter 9 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 9 - Prob. 9.1.1PCh. 9 - Prob. 9.1.2PCh. 9 - Prob. 9.1.3PCh. 9 - Prob. 9.1.4PCh. 9 - Prob. 9.1.5PCh. 9 - Prob. 9.1.6PCh. 9 - A W1422 acts compositely with a 4-inch-thick floor...Ch. 9 - Prob. 9.2.2PCh. 9 - Prob. 9.3.1PCh. 9 - Prob. 9.3.2P
Ch. 9 - Prob. 9.4.1PCh. 9 - Prob. 9.4.2PCh. 9 - Prob. 9.4.3PCh. 9 - Prob. 9.4.4PCh. 9 - Prob. 9.4.5PCh. 9 - Prob. 9.5.1PCh. 9 - Prob. 9.5.2PCh. 9 - Prob. 9.5.3PCh. 9 - Note For Problems 9.6-1 through 9.6-5, use the...Ch. 9 - Note For Problems 9.6-1 through 9.6-5, use the...Ch. 9 - Note For Problems 9.6-1 through 9.6-5, use the...Ch. 9 - Note For Problems 9.6-1 through 9.6-5, use the...Ch. 9 - Note For Problems 9.6-1 through 9.6-5, use the...Ch. 9 - Prob. 9.7.1PCh. 9 - Prob. 9.7.2PCh. 9 - Prob. 9.7.3PCh. 9 - Prob. 9.7.4PCh. 9 - Prob. 9.8.1PCh. 9 - Prob. 9.8.2PCh. 9 - A beam must be designed to the following...Ch. 9 - Prob. 9.8.4PCh. 9 - Prob. 9.8.5PCh. 9 - Prob. 9.8.6PCh. 9 - Prob. 9.8.7PCh. 9 - Prob. 9.8.8PCh. 9 - Use the composite beam tables and select a W-shape...Ch. 9 - Prob. 9.8.10PCh. 9 - Prob. 9.10.1PCh. 9 - Prob. 9.10.2P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Note For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-5 For the beam of Problem 9.4-2. a. Compute the deflections that occur before and after the concrete has cured. b. It the live toad deflection exceeds L360 , select another steel shape using either LRFD or ASD.arrow_forwardA W1422 acts compositely with a 4-inch-thick floor slab whose effective width b is 90 inches. The beams are spaced at 7 feet 6 inches, and the span length is 30 feet. The superimposed loads are as follows: construction load = 20 psf, partition load = 10 psf, weight of ceiling and light fixtures = 5 psf, and live load = 60 psf, A992 steel is used, and fc=4 ksi. Determine whether the flexural strength is adequate. a. Use LRFD. b. Use ASD.arrow_forwardNote For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-2 Compute the following deflections for the beam in Problem 9.2-2. a. Maximum deflection before the concrete has cured. b. Maximum total deflection after composite behavior has been attained.arrow_forward
- Note For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-1 Compute the following deflections for the beam in Problem 9.2-1. a. Maximum deflection before the concrete has cured. b. Maximum total deflection after composite behavior has been attained.arrow_forwardA reinforced concrete cantilever beam is shown below. The beam cross section is a rectangle, 12 inches deep by 18 inches wide. Material properties are: - Concrete weight: wt = 150 pcf - Concrete compressive strength: f'c = 4000 psi - Concrete tensile strength: f't= 400 psi - Steel tensile strength: fy = 60 ksi - Stirrup consists of #4 bar - Beam is not exposed to weather or in contact with soil. Calculate the maximum bending moment under the beam self-weight. 10 ft- 8,750 lb-ft 10,250 lb-ft 11,250 lb-ft 11,750 lb-ft 18" BEAM SECTIONarrow_forwardplease answer all partsarrow_forward
- A beam has a width of 200mm and a height of 250mm and is loaded as shown. Compute the flexural stress of the fibers located at 30mm from the top at a section 5m from the left end. What is the type of stress? Present detailed drawings/FBD’s illustrating your solution.arrow_forwardDesign Specifications 1st and 2nd floor Member Roof Deck Load (Typical) Live Load Item Superimposed Dead Load (Typical) Live Load Superimposed Dead a. b. C. For the structural plan attached, Hint: Self-weight B1 B2 Notes: 1. For simplicity, neglect self-weight of concrete slab B3 G1 G2 C1 C2 Design Loadings Application Slabs Slabs Slabs Slabs Value 4 3 2 3 4 4 4 Value 4 means pinned means continuous Assume all members have the same stiffness (same El) for simplicity 8 4 6 Unit kN/m kN/m kN/m kN/m kN/m kN/m kN/m Unit kPa kPa kPa kPa Determine the factored bending moment (LRFD) to be used in the design of Beam B1 in kNm. Determine the factored shear force (LRFD) to be used in the design of Girder G2 in kN. Determine the factored axial load (LRFD) to be used in the design of Column C1 in kN. -I T C2 G2 C1 G1 C1 5000 B3 1 B2 B1 B2 C2 C1 ∙H. GROUND FLOOR FRAMING PLAN C1 I G2 H G1 İ 8 C2 C1 G1 C1 5000 B3 1 B2 B1 + B2 1 B3 . C2 C1 I C1 SECOND FLOOR AND ROOF DECK FRAMING PLAN G1 G1arrow_forwardAn HSS9 x 7 x3⁄8 filled with concrete is used as a composite column, as shown in Figure. The steel has a yield stress of Fy = 46 ksi, and the concrete has a compressive strength of f ,c =4 ksi. Compute the nominal strength of the column.arrow_forward
- NSCP2015arrow_forwardPlease give mathematical explanation with answerarrow_forward3. A reinforced rectangular concrete beam having a width of 300 mm, effective depth of500 mm, fc’ = 24 MPa, fy = 415 MPa, 4 - 28 mmɸ, d’ = 65 mm. Present the following (a) actual steel ratio (b) maximum steel ratio (c) a(d) c (e) check if steel yields (f) ?steel(g) type of failure (h) reduction factor (i) moment capacityarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning