The existence of the He 2 molecule and its dissociation, on basis of the molecular orbital theory is to be explained. Concept introduction: The electronic configuration for multi-electron diatomic molecule is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The explanation regarding the existence and the dissociation of the He 2 molecule.
The existence of the He 2 molecule and its dissociation, on basis of the molecular orbital theory is to be explained. Concept introduction: The electronic configuration for multi-electron diatomic molecule is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The explanation regarding the existence and the dissociation of the He 2 molecule.
Solution Summary: The author explains the molecular orbital theory of the He_ 2 molecule and its dissociation. The bond order is proportional to the bond energy and inversely
Interpretation: The existence of the
He2 molecule and its dissociation, on basis of the molecular orbital theory is to be explained.
Concept introduction: The electronic configuration for multi-electron diatomic molecule is written using the molecular orbitals, derived from the
H2+ molecular ion.
The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as,
As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The explanation regarding the existence and the dissociation of the
He2 molecule.
Draw the virtual orbitals for the planar and pyramidal forms of CH3 and for the linear and bent forms of CH2
Q2: Draw the molecules based on the provided nomenclatures below:
(2R,3S)-2-chloro-3-methylpentane:
(2S, 2R)-2-hydroxyl-3,6-dimethylheptane:
Q3: Describes the relationship (identical, constitutional isomers, enantiomers or diastereomers)
of each pair of compounds below.
ག
H
CH3
OH
OH
CH3
H3C
OH
OH
OH
//////////
C
CH3
CH3
CH3
CH3
H3C
CH 3
C/III.....
Physics & Astronomy
www.physics.northweste
COOH
H
нош.....
H
2
OH
HO
CH3
HOOC
H
CH3
CH3
CH3
Br.
H
H
Br
and
H
H
H
H
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.