Concept explainers
The overhanging beam A BCD supports two concentrated loads P and Q (see figure),
- For what ratio PIQ will the deflection at point B be zero?
- For what ratio will the deflection at point D be zero?
- If Q is replaced by a uniform load with intensity q (on the overhang), repeat parts (a) and (b), but find ratio Pl(qa).
(a)
Ratio P/Q for which deflection at B is zero .
Answer to Problem 9.5.23P
Ratio P/Q for which deflection at B is zero is
Explanation of Solution
Given Information:
The following figure is given along with relevant information,
The deflection at B is zero.
Calculation:
Consider the following free body diagram,
Take equilibrium of forces in horizontal direction as,
Take equilibrium of forces in vertical direction as,
Take equilibrium of moments about A as,
The bending moment at distance x from point A is given by,
The deflection and bending moment is related by following differential equation
Integrate differential equation (1) with respect to x by putting expression for M to get angle of rotations, as,
Integrate angle of rotation with respect to x get deflections as,
The following conditions are used to evaluate integration constants,
Since deflection at B is zero, hence
Now substitute values of constants and solve the above equation to get
Conclusion:
Therefore, the ratio P/Q for which deflection at B is zero is
(b)
Ratio P/Q for which deflection at D is zero .
Answer to Problem 9.5.23P
Ratio P/Q for which deflection at D is zero is
Explanation of Solution
Given Information:
The following figure is given along with relevant information,
The deflection at D is zero.
Calculation:
Consider the following free body diagram,
Take equilibrium of forces in horizontal direction as,
Take equilibrium of forces in vertical direction as,
Take equilibrium of moments about A as,
The bending moment at distance x from point A is given by,
The deflection and bending moment is related by following differential equation
Integrate differential equation (1) with respect to x by putting expression for M to get angle of rotations, as,
Integrate angle of rotation with respect to x get deflections as,
The following conditions are used to evaluate integration constants,
Since deflection at D is zero, hence
Now substitute values of constants and solve the above equation to get
Conclusion:
Therefore, the ratio P/Q for which deflection at D is zero is
(c)
Ratio P/Q for which deflection at B and D is zero .
Answer to Problem 9.5.23P
Explanation of Solution
Given Information:
The following figure is given along with relevant information,
The deflection at B and D is zero.
Calculation:
Consider the following free body diagram,
Take equilibrium of forces in horizontal direction as,
Take equilibrium of forces in vertical direction as,
Take equilibrium of moments about A as,
The bending moment at distance x from point A is given by,
The deflection and bending moment is related by following differential equation
Integrate differential equation (1) with respect to x by putting expression for M to get angle of rotations, as,
Integrate angle of rotation with respect to x get deflections as,
The following conditions are used to evaluate integration constants,
Substitute values of constants to get the expression for deflection.
Since deflection at B is zero, hence
Solve the above equation to get
For deflection at D is zero,
Solve the above equation to get
Conclusion:
Therefore, the ratio P/Q
Want to see more full solutions like this?
Chapter 9 Solutions
Mechanics of Materials (MindTap Course List)
- 1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forwardA lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forward
- Knowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forwardFind the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning