Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 85AP
To determine
The value of the ratio of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a safe reentry into Earth's atmosphere, the pilots of a space capsule must reduce their speed from 2.60 x 104 m/s to 1.10 × 104 m/s.
The rocket engine produces a backward force on the capsule of 1.80 x 105 N. The mass of the capsule is 3280 kg. For how long must
they fire their engine? Ignore the change in mass of the capsule due to the expulsion of exhaust gases.
Your answer is partially correct.
Docking a Spaceship. You and your crew must dock your 2.75 x 104 kg spaceship at Spaceport Alpha, which is orbiting Mars. In the
process, Alpha's control tower has requested that you ram another vessel, a freight ship of mass 1.80 × 104 kg, latch onto it, and use
your combined momentum to bring it into dock. The freight ship is not moving with respect to the colossal Spaceport Alpha, which has
a mass of 1.85 x 107 kg. Alpha's automated system that guides incoming spacecraft into dock requires that the incoming speed is less
than 2.0 m/s.
(a) Assuming a perfectly linear alignment of your ship's velocity vector with the freight ship (which is stationary with respect to Alpha)
and Alpha's docking port, what must be your ship's speed (before colliding with the freight ship) in order that the combination of the
freight ship and your ship arrive at Alpha's docking port with a speed of 1.65 m/s?
(b) What will be the velocity of Spaceport Alpha when the…
A 0.2 kg plastic cart and a 20 kg lead cart can both roll without friction on a horizontal surface. Equal forces are used to push both carts forward for a time of 1 s, starting from rest.
After the force is removed at t = 1 s, is the momentum of the plastic cart greater than, less than, or equal to the momentum of the lead cart?
Because both carts start from rest, the change in momentum of each cart equals its final momentum. According to the momentum principle, the change in momentum of an object equals the impulse, which depends on ____. Because equal forces are exerted over equal times and impulse is ____ the object's mass, the change in momentum, as well as the final momentum of the plastic cart is ____ that of the lead cart.
Chapter 9 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 9.1 - Two objects have equal kinetic energies. How do...Ch. 9.1 - Your physical education teacher throws a baseball...Ch. 9.3 - Two objects are at rest on a frictionless surface....Ch. 9.3 - Rank an automobile dashboard, seat belt, and air...Ch. 9.4 - Prob. 9.5QQCh. 9.4 - A table-tennis ball is thrown at a stationary...Ch. 9.6 - A baseball bat of uniform density is cut at the...Ch. 9.7 - A cruise ship is moving at constant speed through...Ch. 9 - Prob. 1OQCh. 9 - Prob. 2OQ
Ch. 9 - Prob. 3OQCh. 9 - Prob. 4OQCh. 9 - Prob. 5OQCh. 9 - Prob. 6OQCh. 9 - The momentum of an object is increased by a factor...Ch. 9 - The kinetic energy of an object is increased by a...Ch. 9 - If two particles have equal momenta, are their...Ch. 9 - Prob. 10OQCh. 9 - Prob. 11OQCh. 9 - Two particles of different mass start from rest....Ch. 9 - Prob. 13OQCh. 9 - A basketball is tossed up into the air, falls...Ch. 9 - Prob. 15OQCh. 9 - Prob. 16OQCh. 9 - Prob. 17OQCh. 9 - Prob. 18OQCh. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - While in motion, a pitched baseball carries...Ch. 9 - You are standing perfectly still and then take a...Ch. 9 - Prob. 6CQCh. 9 - Two students hold a large bed sheet vertically...Ch. 9 - A juggler juggles three balls in a continuous...Ch. 9 - Prob. 9CQCh. 9 - Does a larger net force exerted on an object...Ch. 9 - Does a larger net force always produce a larger...Ch. 9 - A bomb, initially at rest, explodes into several...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - A 3.00-kg particle has a velocity of...Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - Prob. 9PCh. 9 - When you jump straight up as high as you can, what...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - Prob. 12PCh. 9 - An estimated forcetime curve for a baseball struck...Ch. 9 - Prob. 14PCh. 9 - A glider of mass m is free to slide along a...Ch. 9 - Prob. 16PCh. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - A tennis player receives a shot with the ball...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Prob. 20PCh. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - Prob. 23PCh. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Prob. 39PCh. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - Prob. 41PCh. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Consider a system of two particles in the xy...Ch. 9 - Prob. 53PCh. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - A ball of mass m is thrown straight up into the...Ch. 9 - Prob. 66APCh. 9 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Prob. 73APCh. 9 - Prob. 74APCh. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Prob. 77APCh. 9 - Prob. 78APCh. 9 - Prob. 79APCh. 9 - A small block of mass m1 = 0.500 kg is released...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - Prob. 84APCh. 9 - Prob. 85APCh. 9 - Prob. 86APCh. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 88APCh. 9 - Prob. 89APCh. 9 - Prob. 90APCh. 9 - Prob. 91APCh. 9 - Prob. 92CPCh. 9 - Prob. 93CPCh. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - On a horizontal air track, a glider of mass m...Ch. 9 - Prob. 96CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A girl of mass mg is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vgp to the right relative to the plank. (The subscript gp denotes the girl relative to plank.) (a) What is the velocity vpi of the plank relative to the surface of the ice? (b) What is the girls velocity vgi relative to the ice surface?arrow_forwardThere is a compressed spring between two laboratory carts of masses m1 and m2. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity v1 in the positive x direction (Fig. P10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart spring system? b. Find an expression for the velocity of cart 2. c. Sometimes, mistakes are made in a laboratory. For example, what changes in parts (a) and (b) if the track is not level as shown in Figure P10.40C? Explain your answer.arrow_forwardA mother pushes her son in a stroller at a constant speed of 1.52 m/s. The boy tosses a 56.7-g tennis ball straight up at 1.75 m/s and catches it. The boys father sits on a bench and watches. a. According to the mother, what are the balls initial and final momenta? b. According to the father, what are the balls initial and final momenta? c. According to the mother, is the balls momentum ever zero? If so, when? If not, why not? d. According to the father, is the balls momentum ever zero? If so, when? If not, why not?arrow_forward
- A rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forwardFigure P9.59a shows an overhead view of the configuration of two pucks of mass In on frictionless ice. The pucks are tied together with a string of length 1' and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance 4 and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d, e, and in? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy?arrow_forwardA cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?arrow_forward
- james and ramon are standing 20 m apart on the slippery surface of a frozen pond. ramon has mass 60 kg and james has mass 90 kg. midway between the two men a mug of their favorite beverage sits on the ice. they pull on the ends of a light rope that is stretched between them. when james has moved 6 m toward the mug, how far has ramon moved from mug of their favorite beveragearrow_forwardAn amusement park features a set of light railcars, currently resting on a straight, level section of track. Each railcar has a mass of 18 kg. Ellen and her younger brother Tim are seated in two of these railcars, which are initially at rest with the rubber buffers just touching each other. Ellen's mass is 42 kg, while Tim's mass is 32 kg. Ellen pushes Tim's railcar so that it moves away with a speed of 3.0 m/s relative to the track. Assuming that the frictional forces on the railcars are small, how far the railcars will have travelled after 2.0 s?arrow_forwardA truck equipped with a massless spring in front crashes with a stationary truck. The mass of the incoming truck is six times the mass of the normal truck. While the spring is being compressed, the trucks are moving closer together, and while it is expanding they are moving farther apart, but at the instant that the spring is fully compressed, they have no relative motion, which means they are moving at the same speed. At this instant, the cars are moving with a speed of 4.2 m/s. Find the speed of the incoming car before the collision.arrow_forward
- Grandma has a new car that uses rocket brakes to slow it down. The car has a mass of 850 kg. She starts out by moving forward with a speed of 12.8 m/s. She then applies the rocket brakes, but as the car comes to a stop she forgets to take her foot off the brake pedal and the rocket continues to apply its force. She ends up moving backwards with a speed of 9.32 m/s. The total time the brakes were firing was 6.74 seconds. (a) Find the change in momentum of the car. (b) Using the formula for impulse, calculate how much force the rocket brake was applying to the car on average, including the direction?arrow_forwardIdentical twins, each with mass 53.5 kg, are on ice skates and at rest on a frozen lake, which may be taken as frictionless. Twin A is carrying a backpack of mass 12.0 kg. She throws it horizontally at 3.15 m/s to Twin B. Neglecting any gravity effects, what are the subsequent speeds of Twin A and Twin B?arrow_forwardHow would you find the speed of the three cars combined?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY