
Rank of the following cases.

Answer to Problem 1OQ
The rank from largest to smallest is
Explanation of Solution
When the lab partner throws a heavy frisbee. It comes with high momentum and collides with the hand. At the moment frisbee is held in hand and thrown back, this collision of frisbee with hand leads to transfer of momentum of frisbee to the hand . Increasing the velocity of hand.
Hence velocity is maximum when hand catches the ball and throws back.
While the velocity is minimum when frisbee just touches the fingers and hand does not stop them as no momentum transfer takes place.
Conclusion:
Case (a):
As soon as hand catches the frisbee and holds it , both mass of frisbee and body act as single unit and which implies larger mass. As momentum should be conserved so initial momentum is transferred to large mass with less velocity. Here less velocity is acquired.
Case (b):
Here velocity is largest. At the moment during collision of hand and frisbee, momentum gets transferred to hand which increases the velocity of hand. Thus, the velocity is largest.
Case (c):
Frisby just bobbles the hand and get away from the hand. Here velocity of hand will be minimum as no transfer of momentum takes place.
Case (d):
Here the hand throws the ball vertically upward , body experiences normal force from ice which stops the body from falling.
Case (e):
As the hand holds the Frisbee and keep it down to rest, at this moment some momentum is gained by the hand from Frisbee which is not too large in magnitude but is greater than the case when Frisbee is just held into hand.
Thus, the rank from largest to smallest is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- please help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forward
- An ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forwardThe outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forward
- The heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forwardL₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





