
Concept explainers
(a)
The impulse athlete receives from the platform.
(a)

Answer to Problem 20P
The impulse athlete receives from the platform is
Explanation of Solution
Impulse experienced by the athlete is caculated from expression of impulse force law .
Write the expression for the impulse force law.
Here ,
Conclusion:
Substitute
Thus, the impulse athlete receives from the platform is
(b)
The velocity with which it reaches the platform.
(b)

Answer to Problem 20P
The velocity with which it reaches the platform is
Explanation of Solution
The athlete jumps on a plateform this converts potential energy to kinetic energy.
Write the expression for the conservation of energy.
Here
Write the expression for the initial kinetic energy.
Here,
Initially athlete jumps from the rest so initial velocity is zero.
Substitute
Write the expression for the initial potential energy.
Here,
Write the expression for the final kinetic energy.
Here,
Write the expression for the final potential energy.
Here,
Substitute
Substitute
Conclusion:
Substitute
Thus, the velocity with which it reaches the platform is
(c)
The velocity with which athlete leaves the platform.
(c)

Answer to Problem 20P
The velocity with which athlete leaves the platform is
Explanation of Solution
The athlete falls on the platform as a result impulse is produced.
Write the expression for the net impulse.
Here,
Write the expression for the impulse due to gravity.
Here,
Write the expression for the impulse momentum law.
Here,
Write the expression for the change in momentum.
Here,
Write the expression for the initial momentum.
Write the expression for the final momentum.
Substitute
Substitute
Substitute
Simplify the above equation for
Conclusion:
Substitute
Thus, the velocity with which athlete leaves the platform is
(d)
The height athlete jumps from the platform.
(d)

Answer to Problem 20P
The height athletes jumps from platform is
Explanation of Solution
The athlete jumps from the plateform to some height. Hence, kinetic energy is converted to gain potential energy.
Write the expression for the conservation of energy.
Here,
Write the expression for the initial kinetic energy at plateform .
Here,
Initially athlete jumps from the rest so initial velocity is zero.
Write the expression for the initial potential energy on platform.
Here,
Initial height at plateform is zero.
Substitute
Write the expression for the final kinetic energy at max height.
Here,
Substitute
Write the expression for the final potential energy at max height.
Here
Substitute
Simplify the above expression for value of
Conclusion:
Substitute
Thus, the height athletes jumps from platform is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- please help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forward
- An ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forwardThe outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forward
- The heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forwardL₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





