The energy required to break one of the H − F bonds in H F 2 − be greater than, less than, or the same as the energy required breaking the bond in H F ; the reason behind this should be explained. Concept Introduction Valance bond ( VBT ) theory: This theory explain a chemical bonding theory that explains the bonding between two atoms is caused by the overlap of half-filled atomic orbitals. The two atoms share each other's unpaired electron to form a filled orbital to form a hybrid orbital and bond together. Bond energy: It is defined bond energy as the average value of the gas-phase bond dissociation energies for all bonds of the same type within the same chemical species.
The energy required to break one of the H − F bonds in H F 2 − be greater than, less than, or the same as the energy required breaking the bond in H F ; the reason behind this should be explained. Concept Introduction Valance bond ( VBT ) theory: This theory explain a chemical bonding theory that explains the bonding between two atoms is caused by the overlap of half-filled atomic orbitals. The two atoms share each other's unpaired electron to form a filled orbital to form a hybrid orbital and bond together. Bond energy: It is defined bond energy as the average value of the gas-phase bond dissociation energies for all bonds of the same type within the same chemical species.
Solution Summary: The author explains the Valance bond theory, which describes the bonding between two atoms caused by the overlap of half-filled atomic orbitals.
Formula Formula Bond dissociation energy (BDE) is the energy required to break a bond, making it an endothermic process. BDE is calculated for a particular bond and therefore consists of fragments such as radicals since it undergoes homolytic bond cleavage. For the homolysis of a X-Y molecule, the energy of bond dissociation is calculated as the difference in the total enthalpy of formation for the reactants and products. X-Y → X + Y BDE = Δ H f X + Δ H f Y – Δ H f X-Y where, ΔHf is the heat of formation.
Chapter 9, Problem 69SCQ
Interpretation Introduction
Interpretation:
The energy required to break one of the H−F bonds in HF2− be greater than, less than, or the same as the energy required breaking the bond in HF; the reason behind this should be explained.
Concept Introduction
Valance bond (VBT) theory: This theory explain a chemical bonding theory that explains the bonding between two atoms is caused by the overlap of half-filled atomic orbitals. The two atoms share each other's unpaired electron to form a filled orbital to form a hybrid orbital and bond together.
Bond energy: It is defined bond energy as the average value of the gas-phase bond dissociation energies for all bonds of the same type within the same chemical species.
4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton
transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted
without ambiguity.
a.
2.
1. LDA
3. H3O+
HO
b.
H3C CH3
H3O+
✓ H
OH
2. Provide reagents/conditions to accomplish the following syntheses. More than one step is
required in some cases.
a.
CH3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell