Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 27PS

(a)

Interpretation Introduction

Interpretation:

The electronic configuration in molecular orbital term should be written for the given molecule chlorine monoxide ClO

Concept Introduction:

Molecular orbital (MO) theory:  is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.

According to this theory there are two types of orbitals,

  1. (1) Bonding orbitals
  2. (2) Antibonding orbitals

Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.

The electronic configuration of oxygen molecule O2 can be represented as follows,

(σ1s)2(σ*1s)2(σ2s)2(σ*2s)2(σ2p)2( π2p)4( π*2p)2 

The * represent the antibonding orbital

(a)

Expert Solution
Check Mark

Answer to Problem 27PS

The electronic configuration ClO molecule is,

(σ2s)2(σ*2s)2( π2p)4(σ2p)2 ( π*2p)3

Explanation of Solution

There are 13 valence electrons in ClO molecule.

In accordance with the MO theory, the electron configuration of this molecule can be written as follows,

(σ2s)2(σ*2s)2( π2p)4(σ2p)2 ( π*2p)3

(b)

Interpretation Introduction

Interpretation:

The Highest Occupied Molecular Orbital (HOMO) in the given molecule chlorine monoxide ClO should be determined.

Concept Introduction:

Molecular orbital (MO) theory:  is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.

According to this theory there are two types of orbitals,

  1. (1) Bonding orbitals
  2. (2) Antibonding orbitals

Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.

The electronic configuration of oxygen molecule O2 can be represented as follows,

(σ1s)2(σ*1s)2(σ2s)2(σ*2s)2(σ2p)2( π2p)4( π*2p)2 

The * represent the antibonding orbital

HOMO and LUMO: This terms are stands for highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), respectively. So this energy difference between the HOMO and LUMO is termed the HOMO–LUMO gap.

(b)

Expert Solution
Check Mark

Answer to Problem 27PS

The ( π*2p) electron is the highest occupied molecular orbital.

Explanation of Solution

There are 13 valence electrons in ClO molecule.

In accordance with the MO theory, the electron configuration of this molecule can be written as follows,

(σ2s)2(σ*2s)2( π2p)4(σ2p)2 ( π*2p)3

The molecular Orbital diagram for the given molecule can be drawn as follows,

  σ*2p(Antibondingelectrons)π*2pπ*2p2px2py2pz2px2py2pzσ2p(Bondingelectrons)π2pπ2p

                            (Antibondingelectrons)(σ*2s)2s2s(Bondingelectrons)(σ2s)2

    (Antibondingelectrons)(σ*2s)2s2s(Bondingelectrons)(σ2s)2

In the (ClO) molecule, three electrons were occupied in p-orbitals mainly in ( π*2p) molecular orbital. Therefore, it is the highest occupied molecular orbital.

(c)

Interpretation Introduction

Interpretation:

It should be checked that whether the given molecule is diamagnetic or paramagnetic in nature.

Concept Introduction:

Molecular orbital (MO) theory:  is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.

According to this theory there are two types of orbitals,

  1. (1) Bonding orbitals
  2. (2) Antibonding orbitals

Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.

The electronic configuration of oxygen molecule O2 can be represented as follows,

(σ1s)2(σ*1s)2(σ2s)2(σ*2s)2(σ2p)2( π2p)4( π*2p)2 

The * represent the antibonding orbital

Atoms with unpaired electrons are called Paramagnetic. Paramagnetic atoms are attracted to a magnet.

Atoms with paired electrons are called diamagnetic. Diamagnetic atoms are repelled by  a magnet

(c)

Expert Solution
Check Mark

Answer to Problem 27PS

The given molecule ClO is paramagnetic in nature.

Explanation of Solution

There are 13 valence electrons in ClO molecule.

In accordance with the MO theory, the electron configuration of this molecule can be written as follows,

(σ2s)2(σ*2s)2( π2p)4(σ2p)2 ( π*2p)3

The molecular Orbital diagram for the given molecule can be  drawn  as follows,

  σ*2p(Antibondingelectrons)π*2pπ*2p2px2py2pz2px2py2pzσ2p(Bondingelectrons)π2pπ2p

                            (Antibondingelectrons)(σ*2s)2s2s(Bondingelectrons)(σ2s)2

    (Antibondingelectrons)(σ*2s)2s2s(Bondingelectrons)(σ2s)2

In the (ClO) molecule, there is one unpaired electron on the upper portion of the MO diagram.

Presence of an unpaired electron induces paramagnetic character to the molecule.

Therefore, the given molecule is paramagnetic in nature.

(d)

Interpretation Introduction

Interpretation:

Bond order and net σandπbonds in the given molecule should be determined.

Concept Introduction:

Molecular orbital (MO) theory:  is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.

According to this theory there are two types of orbitals,

  1. (1) Bonding orbitals
  2. (2) Antibonding orbitals

Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.

The electronic configuration of oxygen molecule O2 can be represented as follows,

(σ1s)2(σ*1s)2(σ2s)2(σ*2s)2(σ2p)2( π2p)4( π*2p)2 

The * represent the antibonding orbital

Bond order: It is the measure of number of electron pairs shared between two atoms.

Bondorder=12(NumberofelectronsinbondoingMOs-NumberofelectronsinantibondingMOs)

(d)

Expert Solution
Check Mark

Explanation of Solution

There are 13 valence electrons in ClO molecule.

In accordance with the MO theory, the electron configuration of this molecule can be written as follows,

(σ2s)2(σ*2s)2( π2p)4(σ2p)2 ( π*2p)3

The bond order of canbe calculatedasfollows,Bondorder=12(NumberofelectronsinbondoingMOs-NumberofelectronsinantibondingMOs)Bondorder=(85)2=32=1.5

From the bond order value it is clear that, there are net 1σbondand0.5πbonds in the molecule.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please correct answer and don't used hand raiting
this is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!
2B: The retrosynthetic cut below provides two options for a Suzuki coupling, provide the identities of A, B, C and D then identify which pairing is better and justify your choice. O₂N. Retro-Suzuki NO2 MeO OMe A + B OR C + D

Chapter 9 Solutions

Chemistry & Chemical Reactivity

Ch. 9.3 - What is the NO bond order in nitrogen monoxide,...Ch. 9.3 - Prob. 2RCCh. 9.3 - Prob. 3RCCh. 9.3 - 4. Among the known dioxygen species (O2+, O2, O2−...Ch. 9.3 - What is the empirical formula of Tynan purple?Ch. 9.3 - Butter yellow absorbs light with a wavelength of...Ch. 9.3 - Prob. 3CSCh. 9.A - Photoelectron spectroscopy is s1milar to the...Ch. 9.A - What is the energy of a photon with a wavelength...Ch. 9.A - Using the accompanying figure, state which...Ch. 9.A - The kinetic energy of an electron ejected from the...Ch. 9.A - The N2+ ions that are formed when electrons with...Ch. 9 - Draw the Lewis structure for chloroform, CHCl3....Ch. 9 - Draw the Lewis structure for NF3. What are its...Ch. 9 - Draw the Lewis structure for hydroxylamine, H2NOH....Ch. 9 - Draw the Lewis structure for 1,...Ch. 9 - Draw the Lewis structure for carbonyl fluoride,...Ch. 9 - Draw the Lewis structure for acetamide, CH3CONH2....Ch. 9 - Specify the electron-pair and molecular geometry...Ch. 9 - Specify the electron-pair and molecular geometry...Ch. 9 - Prob. 9PSCh. 9 - What is the hybrid orbital set used by each of the...Ch. 9 - Draw the Lewis structures of the acid HPO2F2 and...Ch. 9 - Draw the Lewis structures of the arid HSO3F and...Ch. 9 - What is the hybridization of the carbon atom in...Ch. 9 - What is the hybridization of the carbon atoms in...Ch. 9 - What is the electron-pair and molecular geometry...Ch. 9 - Prob. 17PSCh. 9 - For each compound below, decide whether cis and...Ch. 9 - Molecular Orbital Theory (See Examples 9.49.6.)...Ch. 9 - Give the electron configurations for the ions Li2+...Ch. 9 - Platinum hexafluoride is an extremely strong...Ch. 9 - When potassium and oxygen react, one of the...Ch. 9 - Among the following, which has the shortest bond...Ch. 9 - Consider the following list of small molecules and...Ch. 9 - Prob. 27PSCh. 9 - The nitrosyl ion. NO+, has an interesting...Ch. 9 - These questions are not designated as to type or...Ch. 9 - What is the OSO angle and the hybrid orbital set...Ch. 9 - Sketch the resonance structures for the nitrite...Ch. 9 - Sketch the resonance structures for the nitrate...Ch. 9 - Sketch the resonance structures for the N2O...Ch. 9 - Compare the structure and bonding in CO2 and CO32...Ch. 9 - Numerous molecules are detected in deep space....Ch. 9 - Acrolein, a component of photochemical smog, has a...Ch. 9 - The organic compound below is a member of a class...Ch. 9 - The compound sketched below is acetylsalicylic...Ch. 9 - Phosphoserine is a less-common amino acid. (a)...Ch. 9 - Lactic acid is a natural compound found in sour...Ch. 9 - Cinnamaldehyde ocaus naturally in cinnamon oil....Ch. 9 - The ion Si2 was reported in a laboratory...Ch. 9 - The simple valence bond picture of O2 does not...Ch. 9 - Nitrogen, N2, can ionize to form N2+ or add an...Ch. 9 - Which of the homonuclear, diatomic molecules of...Ch. 9 - Which of the following molecules or ions are...Ch. 9 - Prob. 47GQCh. 9 - The structure of amphetamine, a stimulant, is...Ch. 9 - Menthol is used in soaps, perfumes, and foods. It...Ch. 9 - Prob. 50GQCh. 9 - Suppose you carry out the following reaction of...Ch. 9 - Ethylene oxide is an intermediate in the...Ch. 9 - The sulfamate ion, H2NSO3, can be thought of as...Ch. 9 - The compound whose structure is shown here is...Ch. 9 - Prob. 55ILCh. 9 - Carbon dioxide (CO2), dinitrogen monoxide (N2O),...Ch. 9 - Draw the two resonance structures that describe...Ch. 9 - Draw a Lewis structure for diimide, HNNH. Then,...Ch. 9 - Prob. 59SCQCh. 9 - Consider the three fluorides BF4, SiF4, and SF4....Ch. 9 - When two amino acids react with each other, they...Ch. 9 - What is the connection between bond order, bond...Ch. 9 - When is it desirable to use MO theory rather than...Ch. 9 - Show how valence bond theory and molecular orbital...Ch. 9 - Three of the four molecular orbitals for...Ch. 9 - Lets look more closely at the process of...Ch. 9 - Borax has the molecular formula Na2B4O5(OH)4. The...Ch. 9 - A model of the organic compound allene is shown...Ch. 9 - Prob. 69SCQCh. 9 - Prob. 70SCQCh. 9 - Bromine forms a number of oxides of varying...Ch. 9 - Prob. 72SCQCh. 9 - Urea reacts with malonic acid to produce...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Linear Combination of Atomic Orbitals LCAO; Author: Edmerls;https://www.youtube.com/watch?v=nq1zwrAIr4c;License: Standard YouTube License, CC-BY
Quantum Molecular Orbital Theory (PChem Lecture: LCAO and gerade ungerade orbitals); Author: Prof Melko;https://www.youtube.com/watch?v=l59CGEstSGU;License: Standard YouTube License, CC-BY