(a)
Interpretation:
The electronic configuration in molecular orbital term should be written for the given molecule chlorine monoxide
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
(a)
Answer to Problem 27PS
The electronic configuration
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
(b)
Interpretation:
The Highest Occupied Molecular Orbital (HOMO) in the given molecule chlorine monoxide
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
HOMO and LUMO: This terms are stands for highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), respectively. So this energy difference between the HOMO and LUMO is termed the HOMO–LUMO gap.
(b)
Answer to Problem 27PS
The
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
The molecular Orbital diagram for the given molecule can be drawn as follows,
In the (
(c)
Interpretation:
It should be checked that whether the given molecule is diamagnetic or paramagnetic in nature.
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
Atoms with unpaired electrons are called Paramagnetic. Paramagnetic atoms are attracted to a magnet.
Atoms with paired electrons are called diamagnetic. Diamagnetic atoms are repelled by a magnet
(c)
Answer to Problem 27PS
The given molecule
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
The molecular Orbital diagram for the given molecule can be drawn as follows,
In the (
Presence of an unpaired electron induces paramagnetic character to the molecule.
Therefore, the given molecule is paramagnetic in nature.
(d)
Interpretation:
Bond order and net
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
Bond order: It is the measure of number of electron pairs shared between two atoms.
(d)
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
From the bond order value it is clear that, there are net
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry & Chemical Reactivity
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning