Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 5P
The force on a magnetic moment μz in a nonuniform magnetic field Bz is given by
If a beam of silver atoms travels a horizontal distance of 1 m through such a field and each atom has a speed of 100 m/s, how strong must the field gradient dBz/dz be in order to deflect the beam 1 mm?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The density of charge carriers for copper is 8.47 × 1028 electrons per cubic meter. What will be the Hall voltage reading from a probe made up of 3 cm × 2 cm × 1 cm (L × W × T) copper plate when a current of 1.5 A is passed through it in a magnetic field of 2.5 T perpendicular to the 3 cm × 2 cm.
an electron accelerated from rest through potential difference V1 1.00 kV enters the gap between two parallel plates having separation d =20.0 mm and potential difference V2 =100 V.The lower plate is at the lower potential. Neglect fringing and assume that the electron’s velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?
In the figure, an electron accelerated from rest through potential difference V₁-1.10 kV enters the gap between two parallel plates
having separation d = 25.7 mm and potential difference V₂= 104 V. The lower plate is at the lower potential. Neglect fringing and
assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what
uniform magnetic field allows the electron to travel in a straight line in the gap?
h
Number ( i
î+ i
d V₂
k) Units
Chapter 9 Solutions
Modern Physics
Ch. 9.2 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9 - Prob. 1QCh. 9 - Prob. 2QCh. 9 - Prob. 3QCh. 9 - Prob. 4QCh. 9 - Prob. 5QCh. 9 - Prob. 6QCh. 9 - Prob. 7QCh. 9 - Prob. 8Q
Ch. 9 - Prob. 9QCh. 9 - Prob. 11QCh. 9 - For a one-electron atom or ion, spinorbit coupling...Ch. 9 - Prob. 14QCh. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 4PCh. 9 - The force on a magnetic moment z in a nonuniform...Ch. 9 - Consider the original Stern–Gerlach experiment...Ch. 9 - Prob. 7PCh. 9 - Consider a right circular cylinder of radius R,...Ch. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A strip of copper is placed in a uniform magnetic field of magnitude 2.5 T. The Hall electric field is measured to be 1.5103V/m (a) What is the drift speed of the conduction electrons? (b) Assuming that n =8.01028 elections per cubic meter and that the cross-sectional area of the strip is 5.0106m2 , calculate the current in the ship, (c) What is the Hall coefficient 1/nq?arrow_forwardAn electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forwardAt a particular instant an electron is traveling west to east with a kinetic energy of 10 keV. Earth's magnetic field has a horizontal component of 1.8105 T north and a vertical component of 5.0105 T down. (a) What is the path of the election? (b) What is the radius of curvature of the path?arrow_forward
- An electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardA mass spectrometer (Fig. 30.40, page 956) operates with a uniform magnetic field of 20.0 mT and an electric field of 4.00 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle (ma = 6.64 1027 kg)?arrow_forwardA particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forward
- A superconducting wire of diameter 0.25 cm carries a current of 1000 A. What is the magnetic field just outside the wire?arrow_forwardTwo long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardIn the figure, an electron accelerated from rest through potential difference V₁-1.33 kV enters the gap between two parallel plates having separation d = 24.1 mm and potential difference V₂= 175 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? LI Number(i î+ i Ĵ+ [4]1₂ d V₂ i k) Units <arrow_forward
- In the figure, an electron accelerated from rest through potential difference V₁-1.12 kV enters the gap between two parallel plates having separation d = 21.0 mm and potential difference V₂= 129 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? Number ( i + k) Unitsarrow_forwardIn the figure, an electron accelerated from rest through potential difference V₁=1.04 kV enters the gap between two parallel plates having separation d = 18.5 mm and potential difference V₂= 102 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? Number ( i î+ i ·x + Ta}m₂ d V₂ k) Units J/Tarrow_forwardAn electron enters the region between two plates traveling along the x-direction with a speed of v = 4.78 x 106 m/s. Both plates are parallel to the x-y plane and are separated by 4.5 cm. The potential of the top plate at z = 4.5 cm is +100 V while the potential of the bottom plate at z = 0 cm is 0 V. What is the direction of the magnetic field between the plates that is required so that the electron continues traveling in a straight line along the x-direction in this region?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY