Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 1P
To determine
The frequency of the photon required to excite an ESR.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a hydrogen atom in a large magnetic field.
Compute the wavelengths of the photons when it transitioned from the 2p → 1s levels when the hydrogen atom is placed in a magnetic field of 2.00 Tesla.
In total, consider the three transitions L=1 (2p) to L=0 (1s) associated with the three states ?ℓ= −1, 0, +1.
Draw the energy levels for B=0 T and B=2 T.
Ignore the effects of the intrinsic electron’s spin angular momentum and only consider the effect of the orbital angular moment L on the energy levels.
A hydrogen atom undergoes a transition from a 2p state to the 1s ground state. In the absence of a magnetic field, the wavelength of the photon emitted is 122 nm. The atom is then placed in a strong magnetic field in the z@direction. Ignore spin effects; consider only the interaction of the magnetic field with the atom’s orbital magnetic moment.
(a) How many different photon wavelengths are observed for the 2p S 1s transition? What are the ml values for the initial and final states for the transition that leads to each photon wavelength?
(b) One observed wavelength is exactly the same with the magnetic field as without. What are the initial and final ml values for the transition that produces a photon of this wavelength?
(c) One observed wavelength with the field is longer than the wavelength without the field. What are the initial and final ml values for the transition that produces a photon of this wavelength?
(d) Repeat part (c) for the wavelength that is shorter than the wavelength…
In sodium, one of the two yellow lines has a wavelength of 589.76 nm and is the transition from the 2P₁
state to the 2s,
1/2
1/2
state. If a sodium atom is placed in a magnetic field due to the anomalous Zeeman effect, it can
be shown that the energy splitting may be determined by V = μBB extgm,. If the magnitude of the external magnetic field is 2.45 T, determine the difference in wavelength (in m) between the shortest and longest
wavelength between these two states.
123 Tutorial
m
Chapter 9 Solutions
Modern Physics
Ch. 9.2 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9 - Prob. 1QCh. 9 - Prob. 2QCh. 9 - Prob. 3QCh. 9 - Prob. 4QCh. 9 - Prob. 5QCh. 9 - Prob. 6QCh. 9 - Prob. 7QCh. 9 - Prob. 8Q
Ch. 9 - Prob. 9QCh. 9 - Prob. 11QCh. 9 - For a one-electron atom or ion, spinorbit coupling...Ch. 9 - Prob. 14QCh. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 4PCh. 9 - The force on a magnetic moment z in a nonuniform...Ch. 9 - Consider the original Stern–Gerlach experiment...Ch. 9 - Prob. 7PCh. 9 - Consider a right circular cylinder of radius R,...Ch. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For a hydrogen atom in an excited state with principal quantum number n, show that the smallest angle that the orbital angular momentum vector can make with respect to the z-axis is =cos1( n1n) .arrow_forwardwhere ?∞ = 1.097 × 10^7 m−1is the Rydberg constant and ? is the atomic number (thenumber of protons found in the nucleus). Calculate the ground state energy of a triplyionised beryllium atom, Be3+ (a beryllium atom with three electrons removed).arrow_forwardAssume that the 1+z) and |-z) states for an electron in a magnetic field are energy eigen- vectors with energies E and 0, respectively, and assume that the electron's state at t = 0 is -M |y(0)) = Find the probability that we will determine this electron's spin to be in the +x direction at time tarrow_forward
- Electrons in the lower of two spin states in a magnetic field can absorb a photon of the right frequency and move to the higher state. Find the magnetic-field magnitude B required for this transition in a hydrogen atom with n = 1 and l = 0 to be induced by microwaves with wavelength l.arrow_forwardIf we neglect interaction between electrons, the ground state energy of the helium atom is E =2 z2((- e2)/(2ao)) = -108.848eV (Z=2). The true (measured) value is – 79.006eV.Calculate the interaction energy e2/r12 supposing that both electrons are in the 1s state and r12 that the spin wave function is anti-symmetric. What E is the ground state energy?arrow_forward= = Imagine that we have a box that emits electrons in a definite but unknown spin state y). If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz +ħ and 80% to have S₂ -ħ. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx Determine the state vector for electrons emerging from the box. You may assume that the vector components are real. -1/ħ. = -arrow_forward
- Chapter 38, Problem 071 For the arrangement of Figure (a) and Figure (b), electrons in the incident beam in region 1 have energy E has a height of U1 = 823 ev and the potential step = 617 ev. What is the angular wave number in (a) region 1 and (b) region 2? (c) What is the reflection coefficient? (d) If the incident beam sends 5.29 x 105 electrons against the potential step, approximately how many will be reflected? V= 0 V< 0 x = 0 region 1 region 2 (a) Energy --E- Electron (b)arrow_forwardA hydrogen atom is in a d state. In the absence of an external magnetic field, the states with different ml values have (approximately) the same energy. Consider the interaction of the magnetic field with the atom’s orbital magnetic dipole moment. (a) Calculate the splitting (in electron volts) of the ml levels when the atom is put in a 0.800 T magnetic field that is in the +z@direction. (b) Which ml level will have the lowest energy? (c) Draw an energy-level diagram that shows the d levels with and without the external magnetic field.arrow_forward(a) What is the magnitude of the orbital angular momentum in a state with e = 2? (b) What is the magnitude of its largest projection on an imposed axis? (a) Number 2.50998008 Units J.s (b) Number 2.11 Units J.sarrow_forward
- The hydrogen atom was initially at the state where n=3 and l=2. It then decays to a lower state releasing a photon. What are the possible photon energies(in [eV]) that may be observed?arrow_forwardElectrons in the lower of two spin states in a magnetic field can absorb a photon of the right frequency and move to the higher state. Calculate the value of B for a wavelength of 4.20 cm.arrow_forwardIn a one-dimensional system, the density of states is given by N(E)= 2m, where L is the length of the sample L√2m in the and m is the mass of the electron, as seen in class. There are N quantum particles with spin |S| = sample (the quantum particles can be understood as 'special electrons with spin [S] ='), so that each state can be occupied by 2|S| + 1 particles. Determine the Fermi energy at 0 K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax