Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.2, Problem 1E
To determine
The possible values of angle between
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
13.10 If the radial momentum p, and radial velocity a, for an electron in a central potential are
defined by
r.p-ih
a.r
Pr =
Xr=
"
r
r
show that
ihk Ba,
(ap) = ar Pr +
r
B(o'. L + h)
where k =
ħ
The electron in a certain hydrogen atom has an angular momentum of 2.583×10−34 J.s. What is the largest possible magnitude for the
z-component of the angular momentum of this electron?
For accuracy, use h=6.626×10−34 J⋅s. find Number Units
How many distinct angles from the vertical axis can the orbital angular momentum vector L make for an electron with l = 7?
Chapter 9 Solutions
Modern Physics
Ch. 9.2 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9 - Prob. 1QCh. 9 - Prob. 2QCh. 9 - Prob. 3QCh. 9 - Prob. 4QCh. 9 - Prob. 5QCh. 9 - Prob. 6QCh. 9 - Prob. 7QCh. 9 - Prob. 8Q
Ch. 9 - Prob. 9QCh. 9 - Prob. 11QCh. 9 - For a one-electron atom or ion, spinorbit coupling...Ch. 9 - Prob. 14QCh. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 4PCh. 9 - The force on a magnetic moment z in a nonuniform...Ch. 9 - Consider the original Stern–Gerlach experiment...Ch. 9 - Prob. 7PCh. 9 - Consider a right circular cylinder of radius R,...Ch. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the magnitude of the spin momentum of an electron? (Express you answer in terms of h.)arrow_forwarda) How many distinct angles from the vertical axis can the orbital angular momentum vector L make for an electron with l = 7? b)Calculate the smallest possible angle the L can make with respect to the vertical axis. (Hint: The smallest angle occurs when ml takes the maximum allowed value. Sketch L in that case and compare the vertical component, which is related to ml, to the magnitude of L, which is related to l.)arrow_forwardIn spherical coordinates, the ladder operators for orbital angular momentum are of the form: Ĺ+ Ĺ a. b. C. = eip [Ĺ₂,Ĺ+] = ±Û± [L²,L+] = 0. [Ĺ+, Ĺ_] = 2Ĺ₂. e Cae Ә (- + icot 0. Ə 20 ə до 980) Show, by explicit calculation of the relevant products, that these operators satisfy the commutation relations +icot 0.arrow_forward
- It may be argued on theoretical grounds that the radius of the hydrogen atom should depend only on the fundamental constants h, e, the electrostatic force constant k = 1/4πℰ0, and m (the electron’s mass). Use dimensional analysis to show that the combination of these factors that yields a result with dimensions of length is h2kme2.arrow_forwardIn a deuterium nucleus, the proton and neutron spins can be either parallel or antiparallel. What are the possible values of the total spin of the deuterium nucleus? (It is not necessary to consider any orbital angular momentum.) The magnetic dipole moment of the deuterium nucleus is measured to be nonzero. Which of the possible spins is eliminated by this measured value?arrow_forwardA magnetic field is applied to a freely floating uniform iron sphere with radius R = 2.00 mm. The sphere initially had no net magnetic moment, but the field aligns 12% of the magnetic moments of the atoms (that is, 12% of the magnetic moments of the loosely bound electrons in the sphere, with one such electron per atom). The magnetic moment of those aligned electrons is the sphere’s intrinsic magnetic moment .What is the sphere’s resulting angular speed v?arrow_forward
- You are working on determining the angle that separates two hybridized orbitals. In the process of determining the coefficients in front of the various atomic orbitals, you align the first one along the z-axis and the second in the x/z-plane (so o = 0). The second hybridized orbital was determined to be: W2 = R1s + R2p, sin 0 + R2p, cos 0 Determine the angle, 0, in degrees to one decimal place (XX.X) that separates these two orbitals. Assume that the angle will be between 0 and 90 degrees.arrow_forwardan angular momentum vector has a maximum z component of +3ℏ, how many different z components can it have?arrow_forwardThe nucleus of a hydrogen atom is a single proton, which has a radius of about 1.1 × 10-15 m. The single electron in a hydrogen atom orbits the nucleus at a distance of 5.3 x 10-¹1 m. What is the ratio of the density of the hydrogen nucleus to the density of the complete hydrogen atom? Number i 1.12E+13 Units (no units)arrow_forward
- Darrow_forwardChapter 4- questn-23 The position of an electron is given by i = 3.0tî – 4.0t2j + 2.0k , where r is in meter, t is in second. What is the angle between i and +x axis at t=2s. Option 1 Option 2 Option 3 Option 4 Option 5 78.4° 79.4° 80.4° 81.4° 82.4°arrow_forwardConsider a beam of photons traveling along the z axis. The beam passes through a sequence of three ideal linear polarizers. The first polarizer has its polarization axis along the x axis. The second polarizer has its polarization axis along the x' axis, where x = cos D✗+ sin Dy. (Note that the x' axis is in the xy plane and makes an angle with the +x axis.) The third polarizer has its polarization axis along the y axis. (a) Of the photons that pass through the first polarizer, what fraction will make it through the last polarizer? (Show this result using Dirac notation; don't just use a result that you remember from introductory physics.) (b) If the middle polarizer is removed, what fraction of photons that make it through the first polarizer will get through the last polarizer? (c) Comment on how the results of this problem compare with those of the previous problem, where we looked at a seemingly similar situation for spin 1/2 particles.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning