Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 18P
To determine
The probability density of electron present in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Express the complex number z1 = (√(3) + i)/2 in the form rei Φ. What about z2 = (1 + √(3i))/2? If these complex numbers are the probability amplitudes for photons to be detected, what is the probability in each case?
(Hint: See attatched image for more on finding probability amplitudes)
What is the answer
The Einstein's model makes the assumption that a solid can be treated a set of N identical, independent
harmonic oscillators. Compute the heat capacity for such a system. Make the simplifying assumption that a single
harmonic oscillator is described by the quantized energy levels: E, = kħw, where k = 0,1, 2, ....
Chapter 9 Solutions
Modern Physics
Ch. 9.2 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9 - Prob. 1QCh. 9 - Prob. 2QCh. 9 - Prob. 3QCh. 9 - Prob. 4QCh. 9 - Prob. 5QCh. 9 - Prob. 6QCh. 9 - Prob. 7QCh. 9 - Prob. 8Q
Ch. 9 - Prob. 9QCh. 9 - Prob. 11QCh. 9 - For a one-electron atom or ion, spinorbit coupling...Ch. 9 - Prob. 14QCh. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 4PCh. 9 - The force on a magnetic moment z in a nonuniform...Ch. 9 - Consider the original Stern–Gerlach experiment...Ch. 9 - Prob. 7PCh. 9 - Consider a right circular cylinder of radius R,...Ch. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25P
Knowledge Booster
Similar questions
- A spin state of an electron in the vector form is given by 3i X = A 4 %3D (a) Determine the normalization constant A, assuming it to be real and positive. (b) Write down the x using the X+ and X-. If z-component of the spin of the electron is measured, what is the probability of finding the value in +ħ/2? (c) Determine the expectation value and uncertainty of S? in terms of h when the electron is in spin state x. Justify your answer. (d) Determine the expectation value of the product S?S, in terms of h when the electron is in spin state X.arrow_forwardModel an atom as an electron confined in a rigid box of length 0.10nm. Calculate the wavelength of the emitted photon for the electronic transition from the second excited state to the ground state.Express your answer in units of nm.arrow_forwardIn a one-dimensional system, the density of states is given by N(E)= 2m, where L is the length of the sample L√2m in the and m is the mass of the electron, as seen in class. There are N quantum particles with spin |S| = sample (the quantum particles can be understood as 'special electrons with spin [S] ='), so that each state can be occupied by 2|S| + 1 particles. Determine the Fermi energy at 0 K.arrow_forward
- a) Calculate the energy of the emissive transition with the lowest energy possible for the Lyman series, for a mole of hydrogen atoms. Express your answer in joules/mol. b) Is this transition in the visible spectral domain? If not, in which region is it located?arrow_forwardConsider hydrogen in the ground state, 100 . (a) Use the derivative to determine the radial position for which the probability density, P(r), is a maximum. (b) Use the integral concept to determine the average radial position. (This is called the expectation value of the electrons radial position.) Express your answers into terms of the Bohr radius, a0. Hint: The expectation value is the just average value, (c) Why are these values different?arrow_forwardif the chlorine molecule at 290K were to rotate at the angular frequency predicted by the equipartition theorem what would be the average centipital force ? ( the atoms of Cl are 2 x 10-10 m apart and the mass of the chlorine atom 35.45 a.m.u )arrow_forward
- Consider a classical model of an electron as a uniform solid sphere with a radius of 8.17 x 10-17 m. Imagine that this electron possesses spin angular momentum L; = Iw = h/2 because of classical rotation about the z axis. Determine the speed of a point on the equator of the electron. State how this speed compares with the speed of light. What does your result suggest about the validity of this model?arrow_forwardFor a hydrogen-like atom with atomic number of Z, calculate the expectation values of (a) r and (b) potential energy (U = - Zee²) in Απερτ, the 2s state. Note that the wave function for the 2s state is 1 √3²2π (2) ³/2 (2. )e-(z/2a0)r. 425 = Z aoarrow_forwardAn electron is in a 3p state in the hydrogen atom, given that the expectation value is 12.5a_0 What is the probability of finding the electron within +/- a_0 of your expectation value. (That is, in the range (r − a_0) < r < (r+a_0) where r is the expectation value from above. The answer should be 0.1991.arrow_forward
- Calculate the classical mean kinetic energy for the electrons in sodium at room temperature. From this, determine their de Broglie wavelength 2. For a classical description to be valid, we must require that λ is much smaller than the mean separation d of the particles. Show that this is not the case, given that the electron density in sodium is 2.65x1028 m³.arrow_forward(a) Predict the energy in eV of a photon emitted in a transition from the first excited state to the ground state in eV for a system consisting of a nucleus containing Z = 50 protons and just one electron. You need not recapitulate the entire derivation for the Bohr model, but think carefully about the changes you have to make to take into account the factor Z. (b) The negative muon (μ−) behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ− comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. For a system consisting of a nucleus of platinum (Pt195 with 78 protons and 117 neutrons) and just one negative muon, predict the energy in eV of a photon emitted in a transition from the first excited state to the ground state. The high-energy photons emitted by transitions between energy levels in such "muonic atoms" are easily observed in…arrow_forward) What are the allowed values for total spin angular momentum of the hydrogen atom having 1 proton and 1 electron, a deuterium atom and a tritium atom? Note: Your analysis should be restricted to just the spin angular momentum. The problem is not asking about orbital angular momentum. Based on your results, which atom types (hydrogen, deuterium, tritium) will respond as a composite boson?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning