![Modern Physics](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_largeCoverImage.gif)
(a)
The lowest energy of the system in which electrons occupy respective state.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 17P
The lowest energy of the system in which electrons occupy respective state is
Explanation of Solution
The particle placed in a cubical box is a well-known model in the field of
The particle in a box is a completely hypothetical model which illustrates the basic difference between the classical and quantum models. According to
Write the expression for the energy of the particle in cubical box.
Here,
According to Pauli Exclusion Principle, no more than two fermions can occupy same state. The electros are also fermions and are identical due to which any two electrons can occupy any state.
The electrons will, first, occupy ground state and then they will occupy further states with two electrons filled in each state.
The minimum energy of the system is the sum of energies of electrons present in ground state and other states. The electrons can also occupy the degenerate energy state due to which there can be three possible combinations, of respective
The energy of the electrons presents in the states
Write the expression for the minimum energy of the system of 8 electrons.
Simplify the above expression.
Here,
Conclusion:
Substitute
Substitute
Substitute
Thus, the lowest energy of the system in which electrons occupy respective state is
(b)
The lowest energy of the system of particles which have same mass as electrons but do not obey exclusion principle.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 17P
The lowest energy of the system of particles which have same mass as electrons but do not obey exclusion principle is
Explanation of Solution
Since, the particles do not obey exclusion principle. Therefore all the particles can occupy same state that is ground state.
Write the expression for the minimum energy.
Here,
Conclusion:
Substitute
Substitute
Thus, the lowest energy of the system of particles which have same mass as electrons but do not obey exclusion principle is
Want to see more full solutions like this?
Chapter 9 Solutions
Modern Physics
- 5.4 ⚫ BIO Injuries to the Spinal Column. In the treatment of spine injuries, it is often necessary to provide tension along the spi- nal column to stretch the backbone. One device for doing this is the Stryker frame (Fig. E5.4a, next page). A weight W is attached to the patient (sometimes around a neck collar, Fig. E5.4b), and fric- tion between the person's body and the bed prevents sliding. (a) If the coefficient of static friction between a 78.5 kg patient's body and the bed is 0.75, what is the maximum traction force along the spi- nal column that W can provide without causing the patient to slide? (b) Under the conditions of maximum traction, what is the tension in each cable attached to the neck collar? Figure E5.4 (a) (b) W 65° 65°arrow_forwardThe correct answers are a) 367 hours, b) 7.42*10^9 Bq, c) 1.10*10^10 Bq, and d) 7.42*10^9 Bq. Yes I am positve they are correct. Please dont make any math errors to force it to fit. Please dont act like other solutiosn where you vaugley state soemthing and then go thus, *correct answer*. I really want to learn how to properly solve this please.arrow_forwardI. How many significant figures are in the following: 1. 493 = 3 2. .0005 = | 3. 1,000,101 4. 5.00 5. 2.1 × 106 6. 1,000 7. 52.098 8. 0.00008550 9. 21 10.1nx=8.817arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337515863/9781337515863_smallCoverImage.jpg)