Concept explainers
Interpretation:
The hybrid orbitals of carbon atoms in the given molecules are to be determined.
Concept introduction:
Hybridization is the combining of atomic orbitals to form hybrid orbitals.
To determine hybridization of an atom, first draw the Lewis structure of the molecule.
Find the number of electron domains around an atom so as to get the number of hybrid orbitals used by the atom for bonding.
When atomic orbitals combine, they form equal number of hybrid orbitals.
The s orbital combines with one, two, or three p orbitals to form

Answer to Problem 36QP
Solution:
a)
b)
c)
d)
e)
a)
Explanation of Solution
The Lewis structure of
In this, the two carbon atoms are bonded to each other and the three hydrogen atoms by single bonds. Thus, there are four electron domains around each carbon atom. Four electron domainsdepict thepresence of four hybrid orbitals. Thus, in both carbon atoms
b)
The Lewis structure of
The carbon on the left is bonded to three hydrogen atoms by single bonds and to a carbon atom by a single bond. Thus, there are four electron domains around each carbon atom. Four electron domainsdepict thepresence of four hybrid orbitals. Thus, in this carbon
The central carbon is bonded to one carbon atom by a single bond, to another by double bond and to a hydrogen by a single bond. Thus, there are three electron domains around this carbon atom. Three electron domainsdepict thepresence of three hybrid orbitals. Thus, hybridization of the central carbon is
The carbon on the right is bonded to two hydrogen atoms by a single bond and to a carbon by a double bond. Thus, there are three electron domains around this carbon atom. Three electron domainsdepict thepresence of three hybrid orbitals. Thus, hybridization of the carbon on the right is
Thus, the hybridizations of the carbon atoms, from left to right in the molecule, are
c)
The Lewis structure of
The carbon on left is bonded to three hydrogen atoms by single bonds and to a carbon atom by single bond. Thus, there are four electron domains around each carbon atom. Four electron domainsdepict thepresence of four hybrid orbitals. Thus, in this carbon,
The two carbon atoms in the center are bonded to each other by double bonds and to a carbon by a single bond. Thus, there are two electron domains around each carbon atom. Two electron domains depict the presence of two hybrid orbitals. Thus, in these two carbons, sp hybrid orbitals are present.
The carbon on the right is bonded to two hydrogen atoms by single bonds, to a carbon atom by a single bond and to an oxygen by a single bond. Thus, there are four electron domains around this carbon atom. Four electron domainsdepict the presence of four hybrid orbitals. Thus, in this carbon,
Thus, the hybridizations of the carbon atoms from left to right in the molecule are
d)
The Lewis structure of
The carbon on the left is bonded to three hydrogen atoms by single bonds and to a carbon atom by a single bond. Thus, there are four electron domains around each carbon atom. Four electron domainsdepict the presence of four hybrid orbitals. Thus, in this carbon
The carbon on the right is bonded to a hydrogen atom by a single bond and to an oxygen atom by a double bond. Thus, there are three electron domains around this carbon atom. Three electron domainsdepict the presence of three hybrid orbitals. Thus, the hybridization of the carbon atom on the right is
Thus, the hybridizations of carbon atoms from left to right in the molecule are
e)
The Lewis structure of
The carbon on left is bonded to three hydrogen atoms by single bonds and to carbon atom by single bond. Thus, there are four electron domains around each carbon atom. Four electron domainsdepict the presence of four hybrid orbitals. Thus, in this carbon
The carbon on the right is bonded to an oxygen atom by a double bond and to another oxygen atom by a single bond. Thus, there are three electron domains around this carbon atom. Three electron domainsdepict the presence of three hybrid orbitals. Thus, the hybridization of the carbonatomon the right is
Thus, the hybridizations of carbon atoms from left to right in the molecule are
Want to see more full solutions like this?
Chapter 9 Solutions
BURDGE CHEMISTRY VALUE ED (LL)
- Complete the following esterification reaction by drawing the structural formula of the product formed. HOH HO i catalyst catalyst OH HO (product has rum flavor) (product has orange flavor)arrow_forwardThe statements in the tables below are about two different chemical equilibria. The symbols have their usual meaning, for example AG stands for the standard Gibbs free energy of reaction and K stands for the equilibrium constant. In each table, there may be one statement that is faise because it contradicts the other three statements. If you find a false statement, check the box next to t Otherwise, check the "no false statements" box under the table. statement false? AG"1 no false statements: statement false? AG-0 0 InK-0 0 K-1 0 AH-TAS no false statements 2arrow_forwardComplete the following esterification reactions by drawing the line formulas of the carboxylic acid and alcohol required to form the ester shown. catalyst catalyst catalyst apricot fragrancearrow_forward
- Show the saponification products of the following ester: You don't need to draw in the Na+ cation. catalyst, A catalyst, A catalyst, Aarrow_forwardWhat would happen if the carboxylic acid and alcohol groups were on the same molecule? In essence, the molecule reacts with itself. Draw the structure of the products formed in this manner using the reactants below. If two functional groups interact with one another on the same molecule, this is called an “intramolecular" (within one) rather than "intermolecular" (between two or more) attack. OH OH catalyst OH HO catalyst catalyst HO OHarrow_forwardQ3: Write in the starting alkyl bromide used to form the following products. Include any reactants, reagents, and solvents over the reaction arrow. If more than one step is required, denote separate steps by using 1), 2), 3), etc. H OH racemic OH OH 5 racemicarrow_forward
- Draw the Lewis structure of the SO3-O(CH3)2 complex shown in the bottom right of slide 2in lecture 3-3 (“Me” means a CH3 group) – include all valence electron pairs and formal charges.From this structure, should the complex be a stable molecule? Explain.arrow_forwardPredict all organic product(s), including stereoisomers when applicable.arrow_forwardQ5: Propose a reasonable synthesis for the following decalin derivative. using only decalin and alkanes of 3 or fewer carbons. Decalin H3C HO க CH3arrow_forward
- 2Helparrow_forwardplease add appropriate arrows, and tell me clearly where to add arrows, or draw itarrow_forwardWhat I Have Learned Directions: Given the following reaction and the stress applied in each reaction, answer the question below. A. H2(g) + Cl2(g) 2 HCl(g) Stress applied: Decreasing the pressure 1. What is the Keq expression? 2. What will be the effect in the number of moles of HCl(g)? 3. What will be the Equilibrium Shift or the reaction? B. Fe3O4(s) + 4 H2(g) + heat 53 Fe(s) + 4 H₂O(g) Stress applied: Increasing the temperature 1. What is the Keq expression?. 2. What will be the effect in the volume of water vapor collected? 3. What will be the Equilibrium Shift or the reaction? C. 4 NH3(g) + 5 O2(g) 4 NO(g) + 6 H2O(g) + heat Stress applied: Increasing the volume of the container 1. What is the Keq expression?. 2. What will be the effect in the amount of H₂O? 3. What will be the Equilibrium Shift or the reaction?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning

