The molecular formula of the given compound is to be written. The hybridization of each carbon and oxygen atom is to be determined. The geometry of each carbon and oxygen atom is to be described. Concept introduction: Mixing of atomic orbitals to form degenerate molecular orbitals is called hybridization. Hybridization state of each atom is to be calculated from the total number of sigma bond pairs and lone pairs of that atom. If there are two electron domains on an atom, then the atom is s p hybridized. s p orbitals are formed by mixing of one s and one p . If there are three electron domains on an atom, then the atom is s p 2 hybridized. s p 2 orbitals are formed by mixing of one s and two p . If there are four electron domains on an atom, then the atom is s p 3 hybridized. s p 3 orbitals are formed by mixing of one s and three p . A single bond has a sigma bond. A double bond contains a sigma bond and a pi bond. A triple bond contains a sigma bond and two pi bonds.
The molecular formula of the given compound is to be written. The hybridization of each carbon and oxygen atom is to be determined. The geometry of each carbon and oxygen atom is to be described. Concept introduction: Mixing of atomic orbitals to form degenerate molecular orbitals is called hybridization. Hybridization state of each atom is to be calculated from the total number of sigma bond pairs and lone pairs of that atom. If there are two electron domains on an atom, then the atom is s p hybridized. s p orbitals are formed by mixing of one s and one p . If there are three electron domains on an atom, then the atom is s p 2 hybridized. s p 2 orbitals are formed by mixing of one s and two p . If there are four electron domains on an atom, then the atom is s p 3 hybridized. s p 3 orbitals are formed by mixing of one s and three p . A single bond has a sigma bond. A double bond contains a sigma bond and a pi bond. A triple bond contains a sigma bond and two pi bonds.
Solution Summary: The author explains the molecular formula of the given compound and the geometry of each carbon and oxygen atom.
Interpretation: The molecular formula of the given compound is to be written. The hybridization of each carbon and oxygen atom is to be determined. The geometry of each carbon and oxygen atom is to be described.
Concept introduction:
Mixing of atomic orbitals to form degenerate molecular orbitals is called hybridization.
Hybridization state of each atom is to be calculated from the total number of sigma bond pairs and lone pairs of that atom.
If there are two electron domains on an atom, then the atom is sp hybridized. sp orbitals are formed by mixing of one s and one p.
If there are three electron domains on an atom, then the atom is sp2 hybridized. sp2 orbitals are formed by mixing of one s and two p.
If there are four electron domains on an atom, then the atom is sp3 hybridized. sp3 orbitals are formed by mixing of one s and three p.
A single bond has a sigma bond.
A double bond contains a sigma bond and a pi bond.
A triple bond contains a sigma bond and two pi bonds.
Don't used hand raiting and don't used Ai solution
Don't used hand raiting and don't used Ai solution
2.
200
LOD
For an unknown compound with a molecular ion of 101 m/z:
a.
Use the molecular ion to propose at least two molecular formulas. (show your work)
b.
What is the DU for each of your possible formulas? (show your work)
C.
Solve the structure and assign each of the following spectra.
8
6
4
2
(ppm)
150
100
50
ō (ppm)
4000
3000
2000
1500
1000
500
HAVENUMBERI-11
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Quantum Molecular Orbital Theory (PChem Lecture: LCAO and gerade ungerade orbitals); Author: Prof Melko;https://www.youtube.com/watch?v=l59CGEstSGU;License: Standard YouTube License, CC-BY