Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 20CQ
To determine
The property also increases with increase in strain rate for strain rate sensitive material.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Briefly explain the (a) how and (b) why the size of elastic deformation changes as the thickness of the specimen increases when a rod-shaped specimen made of the same material is bent.
The maximum measured Young’s modulus for a carbon nanotube is 950 GPa. How much stress would have to be applied to this nanotube to have the same strain as in the steel sample?
The value of strain if stress is 35 MPa and Youngs modulus
65 MPa
Chapter 9 Solutions
Materials Science And Engineering Properties
Ch. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - Prob. 4CQCh. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - Prob. 8CQCh. 9 - Prob. 9CQCh. 9 - Prob. 10CQ
Ch. 9 - Prob. 11CQCh. 9 - Prob. 12CQCh. 9 - Prob. 13CQCh. 9 - At temperatures above the equi-cohesive...Ch. 9 - Prob. 15CQCh. 9 - Prob. 16CQCh. 9 - Prob. 17CQCh. 9 - Prob. 18CQCh. 9 - Prob. 19CQCh. 9 - Prob. 20CQCh. 9 - Prob. 21CQCh. 9 - Prob. 22CQCh. 9 - Prob. 23CQCh. 9 - Prob. 24CQCh. 9 - Prob. 25CQCh. 9 - Prob. 26CQCh. 9 - Prob. 27CQCh. 9 - Prob. 28CQCh. 9 - Prob. 29CQCh. 9 - Prob. 30CQCh. 9 - Prob. 31CQCh. 9 - Prob. 32CQCh. 9 - Prob. 33CQCh. 9 - Prob. 34CQCh. 9 - Prob. 35CQCh. 9 - Prob. 1ETSQCh. 9 - Prob. 2ETSQCh. 9 - Prob. 3ETSQCh. 9 - Prob. 4ETSQCh. 9 - Prob. 5ETSQCh. 9 - Prob. 6ETSQCh. 9 - Prob. 7ETSQCh. 9 - Prob. 8ETSQCh. 9 - Prob. 9ETSQCh. 9 - Prob. 10ETSQCh. 9 - Prob. 11ETSQCh. 9 - Prob. 12ETSQCh. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - Prob. 9.4PCh. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - Prob. 9.10PCh. 9 - For silver at a tensile stress of 7 MPa and a...Ch. 9 - For germanium at a tensile stress of 410 MPa and a...Ch. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 12 mm diameter rod has an axial strain of 0.0009. If the metal rod has a Poisson's Ratio of 0.25, what is the transverse deformation in the rod (change in diameter) in mm?arrow_forwardA single crystal of a metal is oriented for a tensile test such that its slip plane normal makes an angle of 64.0° with the tensile axis. Three possible slip directions make angles of 30°, 48°, and 78° with the same tensile axis. (a) Which of these three slip directions is most favored? i (b) If plastic deformation begins at a tensile stress of 1.3 MPa (188.6 psi), determine the critical resolved shear stress for this metal. i MPаarrow_forwardA single zinc crystal is loaded in tension with the normal to its slip plane at 60° to the tensile axis and the slip direction at 40° to the tensile axis. a) Calculate the resolved shear stress when a tensile stress of0.69 MPa is applied. b) What tensile stress is necessary to reach the critical resolved shear stress of 0.94 MPa?arrow_forward
- For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 450 mm (17.72 in.)? Assume a value of 0.22 for the strain-hardening exponent, n. i mmarrow_forwardAn elasto-plastic material with strain hardening behavior has a stress-strain relationship composed by a linear elastic phase (E»10 MPa, O y=0.1 MPa) followed by a linear plastic phase with a slope of 1 MPa . Calculate the total strain that correspond to a stress of 0.3 MPa.arrow_forwardIn an unconsolidated undrained triaxial test, it is observed that an increase in cell pressure from 150 kPa to 250 kPa leads to a pore pressure increases of 80 kPa. It is further observed that, an increase of 50 kPa in deviatoric stress results in an increase of 25 kPa in the pore pressure. The value of Skempton's pore pressure parameter B isarrow_forward
- 6.46 For some metal alloy, a true stress of 345 MPa e (50,000 psi) produces a plastic true strain of 0.02. How much does a specimen of this material elongate when a true stress of 415 MPa (60,000 psi) is applied if the original length is 500 mm (20 in.)? Assume a value of 0.22 for the strain-hardening exponent, n.arrow_forwardDraw a tensile stress-strain curve for a typical semi-crystalline polymer such as LLDPE, and define the three main regions on the curve.arrow_forward4. The ratio of direct stress to volumetric strain in case of a body subjected to three mutually perpendicular stresses of equal intensity, is equal to O(A) Young's modulus O(B) Bulk modulus O(C) Modulus of rigidity O(D) Modulus of elasticityarrow_forward
- Answer the ques aarrow_forwardA thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?arrow_forwardANSWER A PLSarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY