Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.6P
(a)
To determine
The stage II creep rate of the nickel at given temperature and tensile stress.
(b)
To determine
The stage II creep rate of the nickel at given temperature and tensile stress.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. Steady-state creep rate data are given below for nickel at 1000°C (1273 K). If it is known that the
activation energy for creep is 272,000 J/mol, compute the steady-state creep rate at a
temperature of 850°C (1123 K) and a stress level of 25 MPa (3625 psi).
o[MPa (psi)]
10
15 (2175)
10
4.5 (650)
During a creep test (constant stress equal to 3.5 MPa) a material has an initial strain of
10 and a strain of 2 x 10* after 30 days. The same material was also submitted to a
relaxation test (constant strain equal to 1.5 x 104). During the relaxation test, determine the
stress after 30 days. Assume that the material follows the Maxwell model.
4
X
a) plot how the critical stress intensity kc depends on the thickness and explain this?
Chapter 9 Solutions
Materials Science And Engineering Properties
Ch. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - Prob. 4CQCh. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - Prob. 8CQCh. 9 - Prob. 9CQCh. 9 - Prob. 10CQ
Ch. 9 - Prob. 11CQCh. 9 - Prob. 12CQCh. 9 - Prob. 13CQCh. 9 - At temperatures above the equi-cohesive...Ch. 9 - Prob. 15CQCh. 9 - Prob. 16CQCh. 9 - Prob. 17CQCh. 9 - Prob. 18CQCh. 9 - Prob. 19CQCh. 9 - Prob. 20CQCh. 9 - Prob. 21CQCh. 9 - Prob. 22CQCh. 9 - Prob. 23CQCh. 9 - Prob. 24CQCh. 9 - Prob. 25CQCh. 9 - Prob. 26CQCh. 9 - Prob. 27CQCh. 9 - Prob. 28CQCh. 9 - Prob. 29CQCh. 9 - Prob. 30CQCh. 9 - Prob. 31CQCh. 9 - Prob. 32CQCh. 9 - Prob. 33CQCh. 9 - Prob. 34CQCh. 9 - Prob. 35CQCh. 9 - Prob. 1ETSQCh. 9 - Prob. 2ETSQCh. 9 - Prob. 3ETSQCh. 9 - Prob. 4ETSQCh. 9 - Prob. 5ETSQCh. 9 - Prob. 6ETSQCh. 9 - Prob. 7ETSQCh. 9 - Prob. 8ETSQCh. 9 - Prob. 9ETSQCh. 9 - Prob. 10ETSQCh. 9 - Prob. 11ETSQCh. 9 - Prob. 12ETSQCh. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - Prob. 9.4PCh. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - Prob. 9.10PCh. 9 - For silver at a tensile stress of 7 MPa and a...Ch. 9 - For germanium at a tensile stress of 410 MPa and a...Ch. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two samples of a metal with an elastic modulus of 130 GPa, diameter 10 mm, and gauge length 100 mm undergo creep at 600°C according to the table below: a) Calculate the extension due to elastic deformation for each sample. b) Calculate the steady state creep rate for each sample. c) Creep occurs according to: arrow_forwardConsider a single crystal oriented such that the slip direction and normal to the slip plane are at angles 42.7° and 48.3°, respectively, with the tensile axis. If the critical resolved shear stress is 26.3 MPa, what applied stress (in MPa) will be necessary to cause the single crystal to yield? i MPaarrow_forward6.46 For some metal alloy, a true stress of 345 MPa e (50,000 psi) produces a plastic true strain of 0.02. How much does a specimen of this material elongate when a true stress of 415 MPa (60,000 psi) is applied if the original length is 500 mm (20 in.)? Assume a value of 0.22 for the strain-hardening exponent, n.arrow_forward
- For silver at a tensile stress of 7 MPa and a temperature of 839C , there are two equally contributing creep mechanisms. What are they?arrow_forwardWhich of the following statements is incorrect? Both the grain boundary and bulk diffusion creep mechanism lead to elongated grains. For linear creep, the creep exponent in the steady-state creep rate equation is around 1. S-N curves are a plot of the stress versus the number of cycles to failure. The relaxation modulus is a time-dependent elastic modulus used for viscoelastic polymers. Crystalline polymers show a large drop in the relaxation modulus around the glass transition temperature.arrow_forwardDuring a high cycle fatigue test, a metallic specimen is subjected to cyclic loading with a mean stress of +140 MPa, and a minimum stress of -70 MPa. What is the R- ratio (minimum stress to maximum stress) for this cyclic loading?arrow_forward
- An aluminium specimen with an initial gauge diameter d, = 10 mm and gauge length, 1, = 100 mm is %3D subjected to tension test. A tensile force P= 50 kN is applied at the ends of the specimen as shown, resulting in an elongation of 1 mm in gauge length. The Poisson's ratio (µ) of the specimen is Take shear modulus of material, G = 25 GPa. Consider engineering stress-strain conditions. Parrow_forwardAt an axial load of 25 kN, a 45-mm-wide by 20-mm-thick polyimide polymer bar elongates 2.9 mm while the bar width contracts 0.19 mm. The bar is 220 mm long. At the 25-kN load, the stress in the polymer bar is less than its proportional limit. Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E= (b) v= (c) Athickness= i i GPa mmarrow_forwardAn 8-mm thick steel tank has an outside diameter of 600 mm. It is subjected to an internal pressure of 2.40 MPa. Which of the following gives the circumferential stress in the tank? Which of the following gives the longitudinal stress in the tank? If the allowable design stress in the wall is 125 MPa, which of the following most nearly gives the maximum internal pressure in the tank?arrow_forward
- At an axial load of 20 kN, a 35-mm-wide by 10-mm-thick polyimide polymer bar elongates 2.7 mm while the bar width contracts 0.15 mm. The bar is 240 mm long. At the 20-kN load, the stress in the polymer bar is less than its proportional limit.Determine(a) the modulus of elasticity.(b) Poisson’s ratio.(c) the change in the bar thickness.arrow_forwardA thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?arrow_forwardA thin-wall tube, made of a unidirectional graphite/epoxy lamina with a fiber direction 0 to its axis, is loaded in torsion (Tr) as shown in the figure. Use the Max Stress, Max Strain, Modified Tsai-Hill, Tsai-Wu and Hashin-Rotem failure criteria, to sketch the ultimate value of tr as a function of the fiber orientation angle 0 (0°<0<180°). Indicate the failure modes regions. Given that: (G=985Mpa ; (o= 690Mpa ; (o) = 29Mpa ; (o) =98Mpa ; (r2) = 49Mpa E, = 294GPA ; E, = 6.4GPA ; G, = 4.9GPA ; v =0.23GPA ; v = 0.01GPA %3D %3D Actarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY